Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Journal Article

Scuffing Test Rig for Piston Wrist Pin and Pin Bore

2015-04-14
2015-01-0680
In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
Technical Paper

Lab-to-Lab Correlation for Tire Noise Load Cases

2003-05-05
2003-01-1533
The paper presented a correlation work between the GM and Goodyear acoustical laboratories to determine the tire noise load cases used for vehicle tire noise allocation and high-frequency airborne noise analysis. A large group of tires with different sizes were tested in the two labs to examine the lab-to-lab load cases differences in terms of near-field sound intensity and far-field sound power. A good agreement was found for the noise ranking between the two labs by 1/3 octave band and overall A-weighted sound intensity and sound power. The correction factors could be determined from one lab to another as well as from the near-field sound intensity to the far-field sound power. The discrepancies were investigated by comparing the two fixtures and two dyno shell profiles. The differences in 1/3 octave band sound measurement between the two labs were found to be contributed mainly by the shell profiles.
Technical Paper

Enabling Powertrain Variants through Efficient Controls Development

2014-04-01
2014-01-1160
The paper examines how the issue of lengthy development times can be mitigated by adopting a multivariable physics based control method for the development and deployment of complex engine control algorithms required for modern diesel engines equipped with Lean NOx Trap aftertreatment technology. The proposed approach facilitates manufacturers to consider lower cost powertrain configurations for selected markets while maintaining higher performance configurations for other markets. The contribution includes on-engine results from joint work between General Motors and Honeywell. The Honeywell OnRAMP Design Suite which applies model predictive control techniques was used for model identification, control design (using model predictive control) and its calibration. With no prior work on the engine this process of calibrating an engine model and achieving transient drive cycle control on the engine required ten days in the test cell and five days of offline work using the OnRAMP software.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
X