Refine Your Search

Topic

Search Results

Technical Paper

The GM RWD PHEV Propulsion System for the Cadillac CT6 Luxury Sedan

2016-04-05
2016-01-1159
This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
Journal Article

Strain Field Measurement in the Vicinity of Ductile Rupture from Digital Image Correlation

2008-04-14
2008-01-0856
A methodology that enables two-dimensional strain field measurement in the vicinity of ductile rupture is described. Fully martensitic steel coupons were strained to fracture using a miniature tensile stage with custom data and image acquisition systems. Rupture initiated near the center of each coupon and progressed slowly toward the gage section edges. A state-of-the-art digital image correlation technique was used to compute the true strain field before rupture initiation and ahead of the resulting propagating macroscopic crack before final fracture occurred. True strains of the order of 95% were measured ahead of the crack at later stages of deformation.
Technical Paper

Signal Age Fault Detection in Distributed Embedded Automotive Systems

2010-04-12
2010-01-0205
More and more advanced features such as adaptive cruise control and collision avoidance are being adopted in road vehicles and these features are usually implemented as distributed systems across multiple ECU nodes that are connected by communication busses. In order to tolerate transient faults affecting a safety critical signal transmitted via bus in such distributed systems, the last used value or a default safe value for a safety critical signal is usually used among different ECU nodes on the bus for a pre-defined time interval before taking some other fault mitigation actions such as disabling a feature. Thus it becomes very important to monitor a signal's age and detect any signal age fault, where a signal age fault is defined as the use of an older or default signal value for longer than or equal to the pre-defined time interval.
Technical Paper

Rapid Residual Stress and Distortion Prediction in Cast Aluminum Components Using Artificial Neural Network and Part Geometry Characteristics

2014-04-01
2014-01-0755
Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Journal Article

Process Robustness of Laser Braze-Welded Al/Cu Connectors

2016-04-05
2016-01-1198
Laser welding of dissimilar metals such as Aluminum and Copper, which is required for Li-ion battery joining, is challenging due to the inevitable formation of the brittle and high electrical-resistant intermetallic compounds. Recent research has shown that by using a novel technology, called laser braze-welding, the Al-Cu intermetallics can be minimized to achieve superior mechanical and electrical joint performance. This paper investigates the robustness of the laser braze-welding process. Three product and process categories, i.e. choice of materials, joint configurations, and process conditions, are studied. It is found that in-process effects such as sample cleanness and shielding gas fluctuations have a minor influence on the process robustness. Furthermore, many pre-process effects, e.g. design changes such as multiple layers or anodized base material can be successfully welded by process adaption.
Technical Paper

Power Capability Testing of a Lithium-ion Battery Using Hardware in the Loop

2010-04-12
2010-01-1073
The energy storage system (ESS) is the key enabler to hybrid electric vehicles (HEVs) that offer improved fuel economy and reduced vehicle emissions. The power capability of a battery has significant impact on the fuel economy of HEVs. This paper presents the power capability testing of a lithium-ion battery with a conventional metal oxide cathode using the hardware in the loop (HIL) at a wide range of charge/discharge conditions and at different temperatures. The achieved test results provide critical data of battery power characteristics and effectively accelerate the development of battery power prediction algorithm.
Technical Paper

Park Pawl Dynamic System Engagement Speed Calculation Using Isight

2015-04-14
2015-01-1363
For a CAE model of the park pawl dynamic system, the engagement speed calculation is done by controlling the input rotational velocity of the vehicle. Usually, it requires multiple adjustment of the input rotational velocity to get the engagement speed and that demands time, effort and file management skill of an analyst. The current objective of this paper is to demonstrate how software Isight, working with ABAQUS Explicit as the solver, can be used to automate the engagement speed calculation procedure and thus reduce the time and effort required of a CAE analyst. The automated system is developed in a way such that the accuracy of the results can be controlled by the end user. It is observed that the automated system significantly saves an analyst's effort. The system design can be optimized easily for modifiable design features such as the torsional spring and the actuator spring stiffness values using the proposed procedure.
Technical Paper

Next Generation “Voltec” Charging System

2016-04-05
2016-01-1229
The electric vehicle on-board charger (OBC) is responsible for converting AC grid energy to DC energy to charge the battery pack. This paper describes the development of GM’s second generation OBC used in the 2016 Chevrolet Volt. The second generation OBC provides significant improvements in efficiency, size, and mass compared to the first generation. Reduced component count supports goals of improved reliability and lower cost. Complexity reduction of the hardware and diagnostic software was undertaken to eliminate potential failures.
Technical Paper

Model-Based Exhaust Pressure Control with Dynamic Feedforward for Engine Protection

2014-04-01
2014-01-1163
The need to reduce fuel consumption and harmful pollutants from engines is an important task for automotive industry. It has led to technological advances in new engine design, such as engine downsizing. Due to the reduction of displacement, engine power output is reduced and thus its overall performance is limited. In order to increase torque and power, engines are typically boosted by turbochargers or superchargers. Meanwhile, the improvement on turbo design makes it possible to operate VGT (variable geometry turbocharger) at harsher exhaust environment for gasoline engines as well (e.g., with much higher exhaust temperature than that of diesel engines). This makes VGT related control problems more challenging and requires attention to protecting corresponding engine hardware during an entire engine life.
Technical Paper

Model Based Approach for Analysis of In-Vehicle CAN Partial Networks Power Consumption

2016-04-05
2016-01-0064
The need for improved vehicle energy efficiency has increased greatly in recent years along with regulatory fuel economy standards. One key aspect of energy efficiency for both conventional and alternative propulsion vehicles is the energy efficiency of the electrical architecture. In the design of electrical architectures there are several techniques available to increase the energy efficiency. One technique is to manage CAN serial data communication by using Partial Networks. This paper describes a model based approach for simulating the vehicle network behavior when CAN Partial Networking is used as the strategy for need based ECU activation. The simulation results will in turn provide ECU power consumption data to support various electrical architecture design decisions.
Journal Article

Mapping of Global Road Systems Based on Statistical Discriminant Analysis

2010-04-12
2010-01-0924
Automotive manufacturers are facing continuously changing Global environment. Traditionally, these manufacturers relied on structural and general durability tests to validate vehicles. For these tests to remain representative of customer usage in a Global environment, the overall surface conditions of the Global road systems must be studied. Understanding and classifying these road systems conditions is an important step in dealing with vehicle durability in the Global environment. In this paper, an approach to mapping the world road systems into Established Roads (ER) and Developing Roads (DR), utilizing Statistical Discriminant Analysis (SDA), is presented. The classification of Global regions as DR and ER road systems can be effectively used to recommend appropriate development and validation tests for each road system. A few examples are presented to demonstrate how the ER vs.
Journal Article

Locating Wire Short Fault for In-Vehicle Controller Area Network with Resistance Estimation Approach

2016-04-05
2016-01-0065
Wire shorts on an in-vehicle controller area network (CAN) impact the communication between electrical control units (ECUs), and negatively affects the vehicle control. The fault, especially the intermittent fault, is difficult to locate. In this paper, an equivalent circuit model for in-vehicle CAN bus is developed under the wire short fault scenario. The bus resistance is estimated and a resistance-distance mapping approach is proposed to locate the fault. The proposed approach is implemented in an Arduino-based embedded system and validated on a vehicle frame. The experimental results are promising. The approach presented in this paper may reduce trouble shooting time for CAN wire short faults and may enable early detection before the customer is inconvenienced.
Journal Article

General Motors Rear Wheel Drive Eight Speed Automatic Transmission

2014-04-01
2014-01-1721
General Motors shall introduce a new rear wheel drive eight speed automatic transmission, known as the 8L90, in the 2015 Chevrolet Corvette. The rated turbine torque capacity is 1000 Nm. This transmission replaces the venerable 6L80 six speed automatic. The objectives behind creation of this transmission are improved fuel economy, performance, and NVH. Packaging in the existing vehicle architecture and high mileage dependability are the givens. The architecture is required to offer low cost for a rear drive eight speed transmission while meeting the givens and objectives. An eight speed powerflow, invented by General Motors, was selected. This powerflow yields a 7.0 overall ratio spread, enabling improved launch capability because of a deeper first gear ratio and better fuel economy due to lower top gear N/V capability, relative to the 6L80. The eight speed ratios are generated using four simple planetary gearsets, two brake clutches, and three rotating clutches.
Technical Paper

Fixed-Point Model Development Assistant Tool

2016-04-05
2016-01-0018
Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software. Input-tracing method is presented to trace the flow of the input signals of the user selected block in the software model.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Technical Paper

Effects of Wind Speed and Longitudinal Direction on Fire Patterns from a Vehicle Fire in a Compact Car

2017-03-28
2017-01-1353
This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
Technical Paper

Development of an End-of-Line Driveline System Balance Tester

2015-06-15
2015-01-2187
This paper describes the development of a semi-automated end-of-line driveline system balance tester for an automotive assembly plant. The overall objective was to provide final quality assurance for acceptable driveline noise and vibration refinement in a rear wheel drive vehicle. The problem to be solved was how to measure the driveline system unbalance within assembly plant constraints including cycle time, operator capability, and integration with a pre-existing vehicle roll test machine. Several challenging aspects of the tester design and development are presented and solutions to these challenges are addressed. Major design aspects addressed included non-contacting vibration sensing, data acquisition/processing system and vehicle position feedback. Development challenges addressed included interaction of engine and driveline vibration orders, flexible driveline coupling effects, tachometer positional reference error, and vehicle-to-vehicle variation of influence coefficients.
Journal Article

Development of Hybrid-Electric Propulsion System for 2016 Chevrolet Malibu

2016-04-05
2016-01-1169
GM has developed an all-new gasoline-electric hybrid powertrain for the model year 2016 Chevrolet Malibu Hybrid vehicle, which was designed to achieve excellent fuel economy, performance, and drive quality. The powertrain shares the transmission architecture with the 2016 Chevrolet Volt extended range electric vehicle, but includes changes to optimize the system for engine driven charge sustaining operation in the range of conditions represented by the US EPA 5 cycle fuel economy tests. In this paper, we describe the Malibu Hybrid propulsion system features and components, including the battery pack, transaxle, electric motors and power electronics, engine, and thermal system. The modifications between the Volt and Malibu Hybrid propulsion systems are discussed and explained as resulting from the differences between the primarily electric and gasoline powered applications.
Journal Article

Design of the Chevrolet Bolt EV Propulsion System

2016-04-05
2016-01-1153
Building on the experience of the Chevrolet Spark EV battery electric vehicle, General Motors (GM) has developed a propulsion system with increased capability for its next generation Chevrolet Bolt EV. It propels a new larger electric vehicle with significantly greater electric driving range. Through extensive analysis the primary propulsion system components, which include the drive unit, traction electric motor, power electronics, energy storage, and on-board charging module, were optimized individually and as an integrated system to deliver improvements in propulsion system energy, power, torque and efficiency. The results deliver outstanding EV range and fun-to-drive acceleration performance.
Journal Article

Control and Integration Challenges for Future Automatic Transmissions

2016-04-05
2016-01-1102
The ever-increasing regulatory requirement on CO2 emissions drives efficiency improvement of vehicle powertrain systems. In this context, three mega trends have been happening in the automotive transmission industry. First, future automatic transmissions will have more gear steps to offer a broader ratio spread and finer ratio steps, which may enable the engine to operate at its efficient regions more often. Second, engine downsizing with boosted power and flexible cylinder deactivation have been become the technology trend to achieve better thermal efficiency. These engine technologies demand improved transmission dampers with greater isolation capabilities to drive future transmission dampers to be equipped with softer springs. Third, future transmissions will be more efficient due to new architectures and incremental subsystem improvements.
X