Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Trajectories After Intersection Collision Impact

1970-02-01
700176
The postcollision motion starts immediately upon completion of a collision impact where the vehicles obtain new sets of velocities through an exchange of momentum. Similitude with model study and fullscale automobile experiments indicate that the post-collision trajectory is essentially a plane motion, governed by inertia and tire friction. Trajectories depend on many parameters (such as tire friction coefficient, front wheel steering angle, vehicle geometrics, and whether wheels are locked or free to rotate) but not on the vehicle weight. Theoretical computation of trajectories are compared with experiments.
Technical Paper

The Performance Effects of Edge-Based Heat Transfer on Lithium-Ion Pouch Cells Compared to Face-Based Systems

2014-04-01
2014-01-1866
Optimizing the hardware design and control strategies of thermal management systems (TMS) in battery packs using large format pouch cells is a difficult but important problem due to the limited understanding of how internal temperature distributions impact the performance and lifetime of the pack. Understanding these impacts is difficult due to the greatly varying length and time scales between the coupled phenomena, causing the need for complex and computationally expensive models. Here, an experimental investigation is performed in which a set of fixed one-dimensional temperature distributions are applied across the face of a Nickel-Cobalt-Manganese (NCM) cathode lithium ion pouch cell in order to study the performance impacts. Effects on the open circuit voltage (OCV), Ohmic resistance, bulk discharge and charge resistance and instantaneous power are investigated.
Technical Paper

The GM RWD PHEV Propulsion System for the Cadillac CT6 Luxury Sedan

2016-04-05
2016-01-1159
This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Technical Paper

Signal Age Fault Detection in Distributed Embedded Automotive Systems

2010-04-12
2010-01-0205
More and more advanced features such as adaptive cruise control and collision avoidance are being adopted in road vehicles and these features are usually implemented as distributed systems across multiple ECU nodes that are connected by communication busses. In order to tolerate transient faults affecting a safety critical signal transmitted via bus in such distributed systems, the last used value or a default safe value for a safety critical signal is usually used among different ECU nodes on the bus for a pre-defined time interval before taking some other fault mitigation actions such as disabling a feature. Thus it becomes very important to monitor a signal's age and detect any signal age fault, where a signal age fault is defined as the use of an older or default signal value for longer than or equal to the pre-defined time interval.
Technical Paper

Shudder and Frictional Characteristics Evaluation of Dual Clutch Transmission Fluids

2014-04-01
2014-01-1988
Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously.
Technical Paper

Self-deposited E-coating for Mg Alloys

2010-04-12
2010-01-0727
Magnesium alloys are not corrosion resistant in many applications and they require coating protection. In this study, we developed an electroless E-coating technique for magnesium alloys and discussed a cathodic E-coating deposition mechanism for the electroless E-coating process. This coating can be formed within a few seconds by dipping a magnesium alloy (i.e., AZ91D) in an E-coat bath without applying a current or voltage. The deposited electroless coat can offer good protection to the AZ91D magnesium alloy in 5 wt% NaCl corrosive solution as well as in a phosphating bath. The most interesting finding is that the electroless coating is not sensitive to local damage. No preferential corrosion attack occurred along the scratches made on the coating.
Technical Paper

Safety Belt Testing Apparatus

2015-04-14
2015-01-1485
A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
Technical Paper

Rapid Residual Stress and Distortion Prediction in Cast Aluminum Components Using Artificial Neural Network and Part Geometry Characteristics

2014-04-01
2014-01-0755
Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Journal Article

Process Robustness of Laser Braze-Welded Al/Cu Connectors

2016-04-05
2016-01-1198
Laser welding of dissimilar metals such as Aluminum and Copper, which is required for Li-ion battery joining, is challenging due to the inevitable formation of the brittle and high electrical-resistant intermetallic compounds. Recent research has shown that by using a novel technology, called laser braze-welding, the Al-Cu intermetallics can be minimized to achieve superior mechanical and electrical joint performance. This paper investigates the robustness of the laser braze-welding process. Three product and process categories, i.e. choice of materials, joint configurations, and process conditions, are studied. It is found that in-process effects such as sample cleanness and shielding gas fluctuations have a minor influence on the process robustness. Furthermore, many pre-process effects, e.g. design changes such as multiple layers or anodized base material can be successfully welded by process adaption.
Technical Paper

Power Capability Testing of a Lithium-ion Battery Using Hardware in the Loop

2010-04-12
2010-01-1073
The energy storage system (ESS) is the key enabler to hybrid electric vehicles (HEVs) that offer improved fuel economy and reduced vehicle emissions. The power capability of a battery has significant impact on the fuel economy of HEVs. This paper presents the power capability testing of a lithium-ion battery with a conventional metal oxide cathode using the hardware in the loop (HIL) at a wide range of charge/discharge conditions and at different temperatures. The achieved test results provide critical data of battery power characteristics and effectively accelerate the development of battery power prediction algorithm.
Technical Paper

Potential for Closed Loop Air-Fuel Ratio Management of a Diesel Engine

1999-03-01
1999-01-0517
The potential for improving the efficiency of a heavy duty turbocharged diesel engine by closed loop Air-Fuel Ratio (AFR) management has been evaluated. Testing conducted on a 12 liter diesel engine, and subsequent data evaluation, has established the feasibility of controlling the performance through electronic control of air management hardware. Furthermore, the feasibility of using direct in-cylinder pressure measurement for control feedback has been established. A compact and robust fiber optics sensor for measuring real time in-cylinder pressure has been demonstrated on a test engine. A preferred method for reducing the cylinder pressure data for control feedback has been established for continued development.
Technical Paper

Next Generation “Voltec” Charging System

2016-04-05
2016-01-1229
The electric vehicle on-board charger (OBC) is responsible for converting AC grid energy to DC energy to charge the battery pack. This paper describes the development of GM’s second generation OBC used in the 2016 Chevrolet Volt. The second generation OBC provides significant improvements in efficiency, size, and mass compared to the first generation. Reduced component count supports goals of improved reliability and lower cost. Complexity reduction of the hardware and diagnostic software was undertaken to eliminate potential failures.
Technical Paper

Meeting Both ZEV and PNGV Goals with a Hybrid Electric Vehicle - An Exploration

1996-08-01
961718
This paper is written to provide information on the fuel efficiency, emissions and energy cost of vehicles ranging from a pure electric (ZEV) to gasoline hybrid vehicles with electric range varying from 30 mi (50km) to 100 mi (160km). The Federal government s PNGV and CARB s ZEV have different goals, this paper explores some possibilities for hybrid-electric vehicle designs to meet both goals with existing technologies and batteries. The SAE/CARB testing procedures for determining energy and emission performance for EV and HEV and CARB s HEV ruling for ZEV credit are also critically evaluated. This paper intends to clarify some confusion over the comparison, discussion and design of electric- hybrid- and conventional- vehicles as well.
Technical Paper

Internal Heat Exchanger Design Performance Criteria for R134a and HFO-1234yf

2010-04-12
2010-01-1210
This paper will examine the various design and performance criteria for optimized internal heat exchanger performance as applied to R134a and HFO-1234yf systems. Factors that will be considered include pressure drop, heat transfer, length, internal surface area, the effect of oil in circulation, and how these factors impact the effectiveness of the heat exchanger. The paper describes the test facility used and test procedures applied. Furthermore, some design parameters for the internal heat exchanger will be recommended for application to each refrigerant.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Journal Article

Impact of Texture on r-value and its Measurement in Magnesium Alloy Sheets

2014-04-01
2014-01-1014
The impact of texture on r-value and its measurement in magnesium alloy sheets has been studied using digital image correlation and electron backscatter diffraction techniques. Two magnesium alloy sheets with distinct textures were used in the present study, namely, AZ31 with a strong basal texture and ZE21 with a randomized texture. It is well known that a conventionally processed AZ31 magnesium sheet has strong basal texture, necessitating contraction and double twinning to accommodate thinning strain. The strain distribution on the sheet surface evolves nonlinearly with strain, impacting the measured r-value. In particular, the normal approach to measuring r-value based on average strains over the gauge section leads to the erroneous conclusion that r-value increases with deformation. When the r-value is measured locally at any point inside or outside the neck, the r-value is shown to have a constant value of 3 for all strain values.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Journal Article

Evaluation and Modification of Constant Volume Sampler Based Procedure for Plug-in Hybrid Electric Vehicle Testing

2011-08-30
2011-01-1750
Plug-in hybrid electric vehicles (PHVs) consume both fossil fuel and grid electricity, which imposes emission testing challenges on the current constant volume sampler (CVS) test method. One reason is that in the charge-depleting cycle, PHVs having all-electric range operate the engine for a small portion of the traction energy need, causing the CVS to overdilute the exhaust gas. The other reason is that the dilution factor (DF) in the EPA calculation has an error caused by ignoring the CO₂ concentration in ambient air. This paper evaluates these challenges by testing a Toyota PHV on the industry standard CVS system combined with additional continuous sampling methodology for continuous diluents, smooth approach orifice (SAO) measurement for ambient air flow, and fuel flow meter (FFM) measurement for fuel consumption. The current EPA DF can produce an error resulting in higher mass calculation.
Technical Paper

Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends

2014-10-13
2014-01-2768
The relationship between ethanol and iso-butanol fuel concentrations and vehicle particulate matter emissions was investigated. This study utilized a gasoline direct injection (GDI) flexible fuel vehicle (FFV) with wall-guided fueling system tested with four fuels, including E10, E51, E83, and an iso-butanol blend at a proportion of 55% by volume. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer with an emphasis on the physical and chemical characterization of particulate matter (PM) emissions. The results indicated that the addition of higher ethanol blends and the iso-butanol blend resulted in large reductions in PM mass, soot, and total and solid particle number emissions. PM emissions for the baseline E10 fuel were characterized by a higher fraction of elemental carbon (EC), whereas the PM emissions for the higher ethanol blends were more organic carbon (OC) in nature.
X