Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Technical Paper

Effects of Gage Section Geometry on Tensile Material Properties by Digital Image Correlation

2012-04-16
2012-01-0184
Accurate material property data in both the elastic and plastic ranges of deformation is essential for accurate material representation in finite element simulations of vehicle systems. Variation of post formed material properties across a part are often of interest in different types of analyses, such as metal forming or fatigue life, for example. Depending on a part's shape it is not always possible to cut standard size tensile test specimens from all areas of interest across the part. Smaller size specimens with curved or tapered gage section may have to be used to promote strain localization and fracture at or near the gage center. This paper presents comparison of quasi-static tensile properties determined using two specimen gage section geometries, straight and tapered. Specifically, the following questions are addressed. How do the engineering strains computed from two-dimensional strain fields obtained by DIC compare to strains measured during standard tensile tests?
X