Refine Your Search

Topic

Author

Search Results

Technical Paper

Ultracapacitor Based Active Energy Recovery Scheme for Fuel Economy Improvement in Conventional Vehicles

2011-04-12
2011-01-0345
In this paper, a low-cost means to improve fuel economy in conventional vehicles by employing ultracapacitor based Active Energy Recovery Buffer (AERB) scheme will be presented. The kinetic energy of the vehicle during the coast down events is utilized to charge the ultracapacitor either directly or through a dc-dc converter, allowing the voltage to increase up to the maximum permissible level. When the vehicle starts after a Stop event, the energy stored in the capacitor is discharged to power the accessory loads until the capacitor voltage falls below a minimum threshold. The use of stored capacitor energy to power the accessory loads relieves the generator torque load on the engine resulting in reduced fuel consumption. Two different topologies are considered for implementing the AERB system. The first topology, which is a simple add-on to the conventional vehicle electrical system, comprises of the ultracapacitor bank and the dc-dc converter connected across the dc bus.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Journal Article

The GM “Voltec” 4ET50 Multi-Mode Electric Transaxle

2011-04-12
2011-01-0887
The Chevrolet Volt is an electric vehicle (EV) that operates exclusively on battery power as long as useful energy is available in the battery pack under normal conditions. After the battery is depleted of available energy, extended-range (ER) driving uses fuel energy in an internal combustion engine (ICE), an on-board generator, and a large electric driving motor. This extended-range electric vehicle (EREV) utilizes electric energy in an automobile more effectively than a plug-in hybrid electric vehicle (PHEV), which characteristically blends electric and engine power together during driving. A specialized EREV powertrain, called the "Voltec," drives the Volt through its entire range of speed and acceleration with battery power alone, within the limit of battery energy, thereby displacing more fuel with electricity, emitting less CO₂, and producing less cold-start emissions than a PHEV operating in real-world conditions.
Technical Paper

The Development of Advanced 2-Way SCR/DPF Systems to Meet Future Heavy-Duty Diesel Emissions

2011-04-12
2011-01-1140
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
Technical Paper

Technical Challenges in Future Electrical Architectures

2011-04-12
2011-01-1021
As part of standardizing the global portfolio, General Motors (GM) created an electrical architecture that will support the GM global product feature set. Introduced in 2009, this common electrical architecture is already being applied to multiple platforms in GM's regional engineering centers. The electrical architecture will be updated regularly to address the needs of new features in the automotive market and to take advantage of the latest technology advancements. The functional requirements of these new features result in technology challenges. In addition, many new features may result in challenges to the vehicle electrical architecture or the vehicle development process. The challenges have been evaluated so that needs and initiatives can be better understood.
Technical Paper

Robust Design of a Light Weight Flush Mount Roof Rack

2011-04-12
2011-01-1274
Roof racks are designed for carrying luggage during customers' travels. These rails need to be strong enough to be able to carry the luggage weight as well as be able to withstand aerodynamic loads that are generated when the vehicle is travelling at high speeds on highways. Traditionally, roof rail gage thickness is increased to account for these load cases (since these are manufactured by extrusion), but doing so leads to increased mass which adversely affects fuel efficiency. The current study focuses on providing the guidelines for strategically placing lightening holes and optimizing gage thickness so that the final design is robust to noise parameters and saves the most mass without adversely impacting wind noise performance while minimizing stress. The project applied Design for Six Sigma (DFSS) techniques to optimize roof rail parameters in order to improve the load carrying capacity while minimizing mass.
Technical Paper

Prevention of Premature Failure of Electric Motors in Proximity to Lubricants

2011-04-12
2011-01-0207
Small electric DC (Direct Current) motors used to actuate various mechanisms in vehicles have failed prematurely when exposed to some formulations of lubricants, which leached into the motor and caused shorting. The subject study explored this failure mechanism in detail as evidenced in vehicle power door lock actuators. Experiments were conducted through the application of various types of lubricants to motors in varying ways to re-create the failure mode experienced by the authors, and to determine an optimized selection of lubricant for maximized cycle life, robust to inherent component manufacturing process variation in both the amount and location of lubrication placement. The detailed data, photographs and conclusions which resulted were summarized. The electric motor failure mode experienced in the example situation was first explained and illustrated with detailed photography.
Technical Paper

Plating on Plastics - Adhesion Testing

2011-04-12
2011-01-0226
Decoratively plated plastic parts continue to be in high demand. One of the essential and challenging features of these finished goods is the adhesion between the metal plating and the plastic. As is the case with any bond between metals and plastics, combating the force from dissimilar thermal growth is an ongoing concern. When a plated plastic part is frozen and the plastic contracts, the failure mode for the plating manifests as a blister or “worm track”. On the other hand, when high heat causes plating failures from growth of the plastic, the problem is one of cracking in the plating. In this study, two methods are discussed that provide insight into the strength of the bond between the metal plating and the ABS and ABS+PC plastics. Peel testing is one means to evaluate the strength of the plating to plastic bond. Peel testing methodology and results are reported for both ABS and ABS+PC samples. A second means to evaluate the bond strength is through thermal cycle testing.
Journal Article

Performance Characterization of a Triple Input Clutch, Layshaft Automatic Transmission Using Energy Analysis

2013-12-15
2013-01-9042
This paper details the design and operating attributes of a triple input clutch, layshaft automatic transmission (TCT) with a torque converter in a rear wheel drive passenger vehicle. The objectives of the TCT design are to reduce fuel consumption while increasing acceleration performance through the design of the gearing arrangement, shift actuation system and selection of gear ratios and progression. A systematic comparison of an 8-speed TCT design is made against a hypothetical 8-speed planetary automatic transmission (AT) with torque converter using an energy analysis model based upon empirical data and first principles of vehicle-powertrain systems. It was found that the 8-speed TCT design has the potential to provide an approximate 3% reduction in fuel consumption, a 3% decrease in 0-100 kph time and 30% reduction in energy loss relative to a comparable 8-speed planetary AT with an idealized logarithmic ratio progression.
Technical Paper

Particle Size and Number Emissions from Modern Light-Duty Diesel Vehicles

2011-04-12
2011-01-0632
This paper focuses on measuring particle emissions of a representative light-duty diesel vehicle equipped with different engine exhaust aftertreatment in close-coupled position, including one designed to meet the upcoming Euro 6 emission standards. The latter combines a lean NOx trap (LNT) and a diesel particulate filter (DPF) in series to simultaneously reduce NOx and PM. Particle Matter (PM) and particle number emissions are measured throughout testing procedure and instrumentation which are compliant with the UN-ECE Regulation 83 proposals. Specifically measuring devices for particle number emissions, provided by two different suppliers, are alternatively used. No significant differences are observed due to the different system employed. On the other hand particle size distributions are measured by means of a specific experimental set-up including a two stage dilution system and an electrical low pressure impactor (ELPI).
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Optimizing Exhaust System Design To Minimize Shipping Costs

2011-04-12
2011-01-1256
The design of an existing GM exhaust system is analyzed for possible design modifications that may result in lower shipping costs between the supplier facility that manufactures the exhaust system and the assembly plant that installs the system. Investment, changes in piece cost, and other factors are examined in order to determine design changes based upon a rate of return on the investment.
Technical Paper

Optimizing Battery Sizing and Vehicle Lightweighting for an Extended Range Electric Vehicle

2011-04-12
2011-01-1078
In designing vehicles with significant electric driving range, optimizing vehicle energy efficiency is a key requirement to maximize the limited energy capacity of the onboard electrochemical energy storage system. A critical factor in vehicle energy efficiency is the vehicle mass. Optimizing mass allows for the possibility of either increasing electric driving range with a constant level of electrochemical energy storage or holding the range constant while reducing the level of energy storage, thus reducing storage cost. In this paper, a methodology is outlined to study the tradeoff between the battery cost savings achieved by vehicle mass reduction for a constant electric driving range and the cost associated with lightweighting a vehicle. This methodology enables informed business decisions about the available engineering options for lightweighting early in the vehicle development process. The methodology was applied to a compact extended-range electric vehicle (EREV) concept.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Journal Article

Modeling/Analysis of Pedestrian Back-Over Crashes from NHTSA's SCI Database

2011-04-12
2011-01-0588
An analysis of the first 35 back-over crashes reported by NHTSA's Special Crash Investigations unit was undertaken with two objectives: (1) to test a hypothesized classification of backing crashes into types, and (2) to characterize scenario-specific conditions that may drive countermeasure development requirements and/or objective test development requirements. Backing crash cases were sorted by type, and then analyzed in terms of key features. Subsequent modeling of these SCI cases was done using an adaptation of the Driving Reliability and Error Analysis Methodology (DREAM) and Cognitive Reliability and Error Analysis Methodology (CREAM) (similar to previous applications, for instance, by Ljung and Sandin to lane departure crashes [10]), which is felt to provide a useful tool for crash avoidance technology development.
Technical Paper

Modeling and Analysis of Electromagnetic Coupling Between Electric Propulsion System Components

2011-04-12
2011-01-0756
The engineering of electric propulsion systems requires time and cost efficient methodologies to determine system characteristics as well as potential component integration issues. A significant part of this analysis is the identification of the electromagnetic fields present in the propulsion system. Understanding of the electromagnetic fields during system operation is a significant design consideration due to the use of components that require large current(s) and high voltage(s) in the proximity of other control system items (such as sensors) that operate with low current(s) and voltage(s). Therefore, it is critical to quantify the electromagnetic fields produced by these components within the design and how they may interact with other system components. Often overlooked (and also extremely important) is an evaluation of how the overall system architecture can generate or react to electromagnetic fields (which may be a direct result of packaging approaches).
Technical Paper

Model Based Torque Converter Clutch Slip Control

2011-04-12
2011-01-0396
To realize better fuel economy benefits from transmissions, car makers have started the application of torque converter clutch control in second gear and beyond, resulting in greater demand on the torque converter clutch (TCC) and its control system. This paper focuses on one aspect of the control of the torque converter clutch to improve fuel economy and faster response of the transmission. A TCC is implemented to control the slip between the pump and turbine of the torque converter, thereby increasing its energy transfer efficiency and increasing vehicle fuel economy. However, due to the non-linear nature of the torque converter fluid coupling, the slip feedback control has to be very active to handle different driver inputs and road-load conditions, such as different desired slip levels, changes in engine input torques, etc. This non-linearity requires intense calibration efforts to precisely control the clutch slip in all the scenarios.
Journal Article

Micro-Cooling/Heating Strategy for Energy Efficient HVAC System

2011-04-12
2011-01-0644
Energy efficient HVAC system is becoming increasingly important as higher Corporate Average Fuel Economy (CAFE) standards are required for future vehicle products. The present study is a preliminary attempt at designing energy efficient HVAC system by introducing localized heating/cooling concepts without compromising occupant thermal comfort. In order to achieve this goal of reduced energy consumption while maintaining thermal comfort it is imperative that we use an analytical model capable of predicting thermal comfort with reasonable accuracy in a non-homogenous enclosed thermal environment such as a vehicle's passenger cabin. This study will primarily focus on two aspects: (a) energy efficiency improvements in an HVAC system through micro-cooling/heating strategies and (b) validation of an analytical approach developed in GM that would support the above effort.
Technical Paper

Individual Cylinder Air-Fuel Ratio Control Part I: L3 and V6 Engine Applications

2011-04-12
2011-01-0695
A frequency-domain approach to balancing of air-fuel ratio (A/F) in a multi-cylinder engine is described. The technique utilizes information from a single Wide-Range Air-Fuel ratio (WRAF) or a single switching (production) O₂ sensor installed in the exhaust manifold of an internal combustion engine to eliminate the imbalances. At the core of the proposed approach is the development of a simple novel method for the characterization of A/F imbalances among the cylinders. The proposed approach provides a direct objective metric for the characterization of the degree of A/F imbalances for diagnostic purposes as well as a methodology for the control of A/F imbalances among various cylinders. The fundamental computational requirement is based on the calculation of a Discrete Fourier Transform (DFT) of the A/F signal as measured by a WRAF or a switching O₂ sensor.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
X