Refine Your Search

Topic

Author

Search Results

Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Technical Paper

Vehicle Crashworthiness Analysis Using Numerical Methods and Experiments

1992-06-01
921075
Past studies have shown the applicability of advanced numerical methods for crashworthiness simulation. Lumped parameter (LP) modeling and finite element (FE) modeling have been demonstrated as two useful methodologies for achieving this endeavor. Experimental tests and analytical modeling using LP and FE techniques were performed on an experimental vehicle in order to evaluate the compatibility and interrelationship of the two numerical methods for crashworthiness simulation. The objective of the numerical analysis was to simulate the vehicle crashworthiness in a 0 degree, 48.6 KPH frontal impact. Additionally, a single commercial software, LS-DYNA3D, was used for both the LP and FE analysis.
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

Utilization of a Chassis Dynamometer for Development of Exterior Noise Control Systems

1997-05-20
972012
The development of systems and components for control of exterior noise has traditionally been done through an iterative process of on road testing. Frequently, road testing of vehicle modifications are delayed due to ambient environmental changes that prevent testing. Vehicle dynamometers used for powertrain development often had limited space preventing far field measurements. Recently, several European vehicle manufacturers constructed facilities that provided adequate space for simulation of the road test. This paper describes the first implementation of that technology in the U.S.. The facility is typical of those used world wide, but it is important to recognize some of the challenges to effective utilization of the technique to correlate this measurement to on road certification.
Technical Paper

TodayS Electronics in TodayS Vehicles

1998-10-19
98C028
Historically, the long development time required to produce a new automobile has meant that the electronics in that vehicle might lag the state-of-the-art by several years. For traditional vehicle electronics, this was certainly an appropriate delay, ensuring through extensive testing and qualification that the quality and reliability of the electronic systems met rigorous standards. However, with the growing consumer-oriented electronics content in today's vehicles, it is becoming more difficult for the automotive manufacturers to meet consumers' expectations with older technology. Couple this with the fast-paced consumer product cycle, typically nine to eighteen and the result is increasing pressure on the vehicle manufacturers from after-market electronics suppliers, who can update their product lines as fast as the component manufacturers can produce new models.
Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

The Electronically Controlled 6.5L Diesel Engine

1993-11-01
932983
For model year 1994, General Motors has completed the roll out of the 6.5L Diesel Engine, with the introduction of the light duty certified naturally aspirated and turbocharged engines. At the heart of the expanded use of the 6.5L is a new electronic powertrain control system. The objectives for this system were to produce an engine that has less variation, is easier to assemble, low cost and capable of meeting both heavy and light duty future emissions requirements. Control features include Fuel Quantity and Timing, EGR, Wastegate, Glow Plugs, Transmission, Cruise Control and Diagnostics.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

The Design and Development of the 2003 Chevrolet Kodiak and GMC TopKick Medium Duty Trucks

2002-11-18
2002-01-3100
For model year 2003, the General Motors Corporation is introducing new medium duty trucks - the Chevrolet Kodiak and GMC TopKick. These new trucks replace the previous versions of the Kodiak and TopKick medium duty trucks that were introduced in 1989 and the Chevrolet and GMC 3500HD that debuted in the 1991 model year. This new series of trucks marks a clear change in General Motors' strategy in the medium duty marketplace. It emphasizes General Motors' strong commitment to the medium duty market, as well as a strong focus on customer needs, vehicle quality and reliability. This paper describes the General Motors strategy in the medium duty market, along with the history of the design and development of these new products. Finally, this paper will discuss performance to program objectives.
Technical Paper

The Automobile: Unwanted Technology - The Later Years Part I: Cars and Crises 1960-1990 Part II: The Dawning of Automotive Electronics

1992-02-01
920845
Several factors have influenced the size and design of domestic passenger cars over the past 30 years. Of most significance has been the influx of imported cars, initially from Europe, later from Japan. Interspersed within the fabric of this influx have been two energy crises and several recessions, and the onset of safety, emission, and energy regulations. These factors have led to various responses by domestic manufacturers as indicated by the types of products and vehicle systems that they have introduced during this period. This paper chronicles both the events as well as the responses.
Technical Paper

THE CADILLAC FRAME: A New Design Concept for Lower Cars

1958-01-01
580014
THE 1957 Cadillac frame is a significant step in design progress toward the ever lower passenger cars demanded by customers and, therefore, car manufacturers. Stemming from tests and experimental designs in process since 1950, this frame combines reduction in height with a slight increase in structural efficiency. It reverses the trend toward the more costly and heavier structures usually associated with lower cars. Mr. Milliken discusses in Part I the steps Cadillac has taken in the last 19 years to reduce the height 9½ in. to 55½ in. The “Tubular Cenrer-X” frame of the 1957 Eldorado Brougham was the latest and most successful answer to the problem. In Part II Mr. Parker describes the A. O. Smith Corp.'s development of the basic idea and the experimental phases and testing which led to the production designs.
Technical Paper

Synthesis of Chassis Parameters for Ride and Handling on the 1997 Chevrolet Corvette

1997-02-24
970097
This paper describes the performance attributes of the all-new front and rear SLA (short-long arm) suspensions, steering system, and tires of the 1997 Corvette. The process by which these subsystem attributes flowed down from vehicle-level requirements for ride and handling performance is briefly described. Additionally, where applicable, specific subsystem attributes are rationalized back to a corresponding vehicle-level performance requirement. Suspension kinematic and compliance characteristics are described and contrasted to those of the previous generation (1984 to 1996 Model Year) Corvette. Both synthesis/analysis activities as well as mule-level vehicle development work are cited for their roles in mapping out specific subsystem attributes and related vehicle performance.
Technical Paper

Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies

1989-02-01
890756
This paper summarizes the rationale used to specify the geometric, inertial and impact response requirements for a small adult female dummy and a large adult male dummy with impact biofidelity and measurement capacity comparable to the Hybrid III dummy, the most advanced midsize adult male dummy. Body segment lengths and weights for these two dummies were based on the latest anthropometry studies for the extremes of the U.S.A. adult population. Other characteristic body segment dimensions were calculated from geometric and mass scaling relationships that assured that each body segment had the same mass density as the corresponding body segment of the Hybrid III dummy. The biomechanical impact response requirements for the head, neck, chest and knee of the Hybrid III dummy were scaled to give corresponding biomechanical impact response requirements for each dummy.
Technical Paper

Simulation of the Hybrid III Dummy Response to Impact by Nonlinear Finite Element Analysis

1994-11-01
942227
The Hybrid III dummy is an anthropomorphic (humanlike) test device, generally used in crashworthiness testing to assess the extent of occupant protection provided by the vehicle structure and its restraint systems in the event of vehicle crash. Lumped-parameter analytical models are commonly used to simulate the dummy response. These models, by virtue of their limited number of degrees of freedom, can neither represent accurate three-dimensional dummy geometry nor detailed structural deformations. In an effort to improve the state-of-the-art in analytical dummy simulations, a set of finite element models of the Hybrid III dummy segments - head, neck, thorax, spine, pelvis, knee, upper extremities and lower extremities - were developed. The component models replicated the hardware geometry as closely as possible. Appropriate elastic material models were selected for the dummy “skeleton”, with the exterior “soft tissues” represented by viscoelastic materials.
Technical Paper

Significance of Intersection Crashes for Older Drivers

1996-02-01
960457
As the driving population ages, there is a need to understand the accident patterns of older drivers. Previous research has shown that side impact collisions, usually at an intersection, are a serious problem for the older driver in terms of injury outcome. This study compares the frequency of side impact, intersection collisions of different driver age groups using state and national police-reported accident data as well as an in-depth analysis of cases from a fatal accident study. All data reveal that the frequency of intersection crashes increases with driver age. The state and national data show that older drivers have an increase frequency of intersection crashes involving vehicles crossing paths prior to the collision compared to their involvement in all crash types. When taking into account traffic control devices at an intersection, older drivers have the greatest involvement of multiple vehicle crashes at a signed intersection.
X