Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

The New PLYMOUTH Engine

1956-01-01
560019
PLYMOUTH'S new V-8 engine has a specific output of 0.65 bhp/cu in. and 145-psi bmep — obtained through a combination of high thermal, volumetric, and mechanical efficiencies. Good design, the author points out, has achieved this high output despite the dual-venturi carburetor and the 7.6/1 compression ratio, selected for satisfactory operation on regular-grade fuels. The engine has a bore and stroke of 3.563 × 3¼, weighs 568 lb without flywheel, is 29⅜ in. long, and is designed for optimum response to future compression ratio increases. (A report of oral discussion following presentation of this paper appears on p. 220, following “The New Packard V-8 Engine,” by W. E. Schwieder.)
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
Technical Paper

Rear Full Overlap High Speed Car-to-Car Impact Simulation

1995-04-01
951085
A rear full overlap car-to-car high speed impact simulation using the DYNA3D Finite Element Software was performed to examine the crush mode for rear structure of a vehicle and to observe the effect of rear bumper system in order to maintain the fuel system integrity. The study was conducted first for two different bumper system configurations, namely: (1) validating the model for struck vehicle with steel rear bumper system, (2) simulating rear end collision with composite rear bumper system attached to the rear rails of struck vehicle. Later a third simulation of the model was conducted with a viable design modification to the composite bumper system for improved crashworthiness. It was identified that a more comprehensive FEA model of the bullet car including front end structure, powertrain components, cooling system and other components which constitute the load paths should be incorporated in the analysis to obtain more meaningful correlation and crashworthiness prediction.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Permeation of Gasoline-Alcohol Fuel Blends Through High-Density Polyethylene Fuel Tanks with Different Barrier Technologies

1992-02-01
920164
The automobile industry has been using high-density polyethylene (HDPE) as a material to fabricate fuel tanks. Because untreated HDPE is permeable to the primary constituents of gasoline, these fuel tanks are now being produced with various barrier technologies that significantly reduce this permeation rate. Four currently available barrier technologies are fluorination, sulfonation, coextrusion, and the laminar barrier technology. These technologies have successfully proven to decrease the permeation rate of pure gasoline. However, it is suspected that their effectiveness may be reduced when alcohols are introduced into the fuel blend. In this work, we determine the permeation rates of gasoline-alcohol fuel blends through HDPE by conducting tests on 22-gallon HDPE fuel tanks and on small HDPE bottles fabricated with and without these barrier technologies. The goal of this study is to provide a comprehensive evaluation of these four barrier technologies.
Technical Paper

Measurement of Total Vehicle Evaporative Emissions

1968-02-01
680125
A sealed plastic enclosure was proposed in February 1967 by HEW as a technique for measurement of fuel system evaporative emissions from an automobile. Early work with this technique uncovered problems such as car background emissions. Subsequent experimental work, however, has solved these problems and has shown the sealed enclosure capable of correctly measuring total vehicle evaporative emissions. Fuel vapors that actually reach the atmosphere can be measured in a simple, direct way without the necessity for vehicle modification. A complete description of the enclosure is given and its use by GM is described.
Technical Paper

General Motors High Performance 4.3L V6 Engine

1992-02-01
920676
FIGURE 1 The 200 HP high performance 4.3L Vortec V6 engine has been developed to satisfy the need for a fuel efficient performance powerplant in the General Motors small truck platforms. Marketing requirements included strong low and mid range torque, relatively high specific power, smoothness and noise comparable to the best competitive six cylinder engines, excellent driveability, and a new technology image. Maintaining the 4.3L engine record of high reliability and customer satisfaction was an absolute requirement. Fuel economy and exhaust emission performance had to meet expected customer and legislated requirements in the mid 1990's.
Technical Paper

Effective On-Board Diagnostics for Electronic Engine Controls

1985-03-01
850422
Properly implemented, On-Board Diagnostic (OBD) Systems fill the gap in sophistication between computer based fuel injection engine controls and a carburetor oriented service industry. By emphasizing simplicity and credibility, inexpensive OBD systems make electronic engine controls a desirable feature to the service technician.
Technical Paper

Crashworthiness Simulation, Design and Development of Cross-Car Stiffener Subsystem

1995-04-01
951083
The rear cross-car stiffener subsystem is generally located at the underside of the rear compartment pan of a car body and connects the two rear longitudinal rails or rear rockers. The primary purpose of this subsystem is to maintain structural integrity as well as fuel system integrity in a rear angle impact or dynamic side impact collision. To evaluate the effect of this subsystem on lateral crashworthiness in a high speed angle impact, a finite element model consisting of the cross-car bar, a portion of rear compartment pan and both rear rails was developed and analyzed with the DYNA3D crashworthiness simulation software. Thus, the cross-car stiffener subsystem design including the welding pattern was finalized and the acceptable design was successfully implemented in the vehicle. Subsequently drop silo tests were carried out to further verify the design and to improve the manufacturing process.
Technical Paper

Chrysler's Versatile 2.2 Liter Fuel Injection Controller

1984-09-01
841249
Using an evolutionary design process, Chrysler has developed a multi-purpose fuel injection controller which goes well beyond simply delivering fuel. Designed with efficiency in mind, this microprocessor based system brings sophisticated technology to the automobile in a reliable and serviceable form.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

Central Port Fuel Injection

1992-02-01
920295
The primary objective of Central Port Fuel Injection is to be a low cost multi-point fuel injection system with the additional attributes of compactness, packaging flexibility, and reliability. Performance of this fuel system closely resembles that of a simultaneous multi-point fuel injection system in flow control, dynamic range, cylinder-to-cylinder distribution, idle quality, transient response, and emissions. The system provides significantly improved performance in the areas of hot fuel handling, cold startability, vacuum and voltage sensitivity and system noise. This performance comes at a significant cost savings and greater packaging and targeting flexibility over a conventional multi-point fuel injection system.
X