Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Life Cycle Management to Evaluate Lead-Free Electrocoat‡

1997-02-24
970696
Environmental costs are a delayed financial burden that result from product decisions made early in the product life cycle--early material choices may create regulatory and waste management costs that were not factored into the acquisition cost. This paper outlines a step-wise approach to determine decision points; environmental, health, safety and recycling (EHS&R) cost drivers that affect decisions; and sources of information required to conduct a Life Cycle Management (LCM) review. Additionally, how LCM fits into the larger concurrent engineering framework is illustrated with an electrocoat primer example. Upstream and downstream supply chain processes are reviewed, as well as organizational challenges that affect the decision process.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

The General Motors Driving Simulator

1994-03-01
940179
A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

THE BUICK Air Poise SUSPENSION

1958-01-01
580046
THIS paper describes the springs, control system, and ride of the air suspension system on the 1958 Buick. The system is a semiclosed one, providing a variable-rate suspension, automatic leveling and trim control, and manual lift. The latter feature is a knob below the instrument panel which can be operated when necessary to cope with unusual clearance conditions. The car remains at the same height with loads of up to five passengers and 500 lb in the trunk. The authors describe the road-holding ability of a car with this suspension system as excellent.
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Technical Paper

Significance of Intersection Crashes for Older Drivers

1996-02-01
960457
As the driving population ages, there is a need to understand the accident patterns of older drivers. Previous research has shown that side impact collisions, usually at an intersection, are a serious problem for the older driver in terms of injury outcome. This study compares the frequency of side impact, intersection collisions of different driver age groups using state and national police-reported accident data as well as an in-depth analysis of cases from a fatal accident study. All data reveal that the frequency of intersection crashes increases with driver age. The state and national data show that older drivers have an increase frequency of intersection crashes involving vehicles crossing paths prior to the collision compared to their involvement in all crash types. When taking into account traffic control devices at an intersection, older drivers have the greatest involvement of multiple vehicle crashes at a signed intersection.
Technical Paper

Predictive Engineering for Instrument-Panel Application Development

1999-03-01
1999-01-0695
With parts consolidation and increasing systems performance requirements, instrument panel systems have become increasingly complex. For these systems, the use of predictive engineering tools can often reduce development time and cost. This paper outlines the use of such tools to support the design and development of an instrument panel (IP) system. Full-scale test results (NVH, head impact, etc.) of this recently introduced IP system were compared with predicted values. Additionally, results from moldfilling analysis and manufacturing simulation are also provided.
Technical Paper

Plastic Material Separation on Vehicle Subsystems

1997-02-24
970414
Hand dismantling of certain automotive parts has been an accepted process to remove high value materials, but in large scale recycling this may not be economical. In plastics, a pure non contaminated material stream is critical for maintaining high material values and this means designing plastic parts that can be machine separated. One candidate for separating the plastics in vehicle subsystems such as instrument panels and door trim panels is density separation. In order to better understand what processes are required to develop design requirements for automated plastic separation methods Chrysler and the Vehicle Recycling Partnership have undertaken a major materials separation study with MBA Polymers. In this paper, we describe the material separation methods and the application of these methods to three automotive interior assemblies.
Technical Paper

Occupant Energy Management Technique for Restraint System Analysis and Design -Theory and Validation

1992-09-01
922082
In this paper, the concept of ridedown analysis is extended to provide the total occupant energy and ridedown energy as functions of time. The difference between the total occupant energy and the energy absorbed by the front structure represents the energy which is dissipated by deforming the components of the restraint system. This analysis allows an improved understanding of the restraint system as a whole, and how its components interact with each other and with the front structure of the car to dissipate the occupant's energy throughout the crash event.
Technical Paper

Ncap-Field Relevance of the Metrics

2001-06-04
2001-06-0170
By design, frontal New Car Assessment Program (NCAP) tests focus on a narrow portion of the spectrum of field crash events. A simple, high level parsing of towaway crashes from NHTSA's National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) files shows that only a small fraction of occupants (but a somewhat larger portion of their harm as measured by ISS) find themselves in crash circumstances remotely similar to NCAP crash conditions. Looking only at seat location, area of damage, direction of force, distribution of damage, and estimated delta-V filters significantly restricts the relevance of NCAP even before critical factors like belt use and vehicle crash partner are considered. Given the limited scope of frontal NCAP it should not be surprising that it has limited usefulness in discriminating among various vehicles' overall performance in the field.
Technical Paper

Hybrid III Sternal Deflection Associated with Thoracic Injury Severities of Occupants Restrained with Force-Limiting Shoulder Belts

1991-02-01
910812
A relationship between the risk of significant thoracic injury (AIS ≥ 3) and Hybrid III dummy sternal deflection for shoulder belt loading is developed. This relationship is based on an analysis of the Association Peugeot-Renault accident data of 386 occupants who were restrained by three-point belt systems that used a shoulder belt with a force-limiting element. For 342 of these occupants, the magnitude of the shoulder belt force could be estimated with various degrees of certainty from the amount of force-limiting band ripping. Hyge sled tests were conducted with a Hybrid III dummy to reproduce the various degrees of band tearing. The resulting Hybrid III sternal deflections were correlated to the frequencies of AIS ≥ 3 thoracic injury observed for similar band tearing in the field accident data. This analysis indicates that for shoulder belt loading a Hybrid III sternal deflection of 50 mm corresponds to a 40 to 50% risk of an AIS ≥ 3 thoracic injury.
Technical Paper

How Seat Design Characteristics Affect Impact Injury Criteria

1986-03-01
860638
The seat can play an important part in improving occupant safety during a car impact. This paper discusses research done to determine how characteristics of seat design affect occupant safety. Impact simulator tests have been run which determine how variation of five specific seat characteristics affect FMVSS 208 occupant injury criteria. These tests simulated a 48.3 km/h (30 mi/h) frontal Oarrier impact using a 50th percentile male anthropomorphic device restrained by a two-point passive shoulder belt system. The five seat characteristics tested were the following: 1) Seat Frame Angle, 2) Seat Frame Structure, 3) H-Point Distance Above the Seat Frame, 4) Energy Absorption of the Seat Frame, and 5) Seat Cushion Foam Firmness. Test results show that the first characteristic can improve all injury criteria. The other four will improve some injury criteria at the expense of others.
Technical Paper

Fundamental Studies of Polyurethane Foam for Energy Absorption in Automotive Interiors

1991-02-01
910404
This paper describes and characterizes energy-absorbing polyurethane foam as exemplified foam made with Bayfill EA systems. This paper emphasizes its use for automotive passive restraint systems. Static and dynamic properties will be presented. In addition the effect of velocity, weight, density, and vehicle environment on energy absorption will be discussed. RECENT federal requirements for the safety of occupants in automobiles has prompted the industry to investigate light weight and low cost materials for energy management. The use of passive restraints in interiors, i.e. air-bags, has necessitated the development of energy-absorbing instrument panels (IP) for passenger cars and multi-purpose vehicles. When air-bags are deployed in a collision the passenger tends to slide under the bag impacting the knee into the instrument panel. Foam as an energy absorbing material has played an important role in the development of knee bolsters for these interiors.
Technical Paper

Fatal Crashes of Female Drivers Wearing Safety Belts

1996-02-01
960459
Fatal crash circumstances for 48 belted female drivers were studied in-depth and compared to those of 83 belted male drivers in a similar population of vehicles. Women had a higher incidence of crashes on slippery roads, during lane changes and passing maneuvers than men who had a higher rate of aggressive driving and speed related crashes (χ2 = 10.47, p < 0.001). Driver-side damage was significantly more frequent in female than male crashes (χ2 = 5.74, p < 0.025) and women had a higher fraction of side impacts (45.9% v 31.4%) and crashes during daylight (87.0% v 72.3%, χ2 = 3.65, p < 0.05) than men. Women also had a higher fraction of potentially avoidable crashes than men (57.5% v 39.0%) and a lower involvement related to aggressive driving (10.6% v 25.6%). These differences were statistically significant (χ2 = 5.41, p < 0.025).
Technical Paper

Experimental and Computer Simulation Analysis of Transients on an Automobile Communication Bus

1995-02-01
950038
Voltage and current surges are a major concern when it comes to ensuring the functional integrity of electrical and electronic components and modules in an automobile system. This paper presents a computer simulation study for analyzing the effect of high voltage spikes and current load dump on a new Integrated Driver/Receiver (IDR) IC, currently being developed for a J1850 Data Communication Bus in an automobile. It describes the modeling and simulation of the protection structure proposed for the device. The simulation study yields a prediction of current and voltage capability of the protection circuit based on thermal breakdown and transient responses of the circuit. Two levels of modeling, namely, the behavioral level model and the component level model, are used to generate the simulation results. Experimental data will be acquired and used to validate the simulation model when the actual device becomes available.
Technical Paper

Evaluation of the Hybrid III Dummy Interactions with Air Bag in Frontal Crash by Finite Element Simulation

1995-11-01
952705
A deformable finite element dummy model was used to simulate air bag interaction with in-position passenger side occupants in frontal vehicle crash. This dummy model closely simulates the Hybrid III hardware with respect to geometry, mass, and material properties. Test data was used to evaluate the validity of the model. The calculated femur loads, chest acceleration and head acceleration were in good agreement with the test data. A semi-rigid dummy model (with rigid chest) was derived from the deformable dummy to improve turnaround time. Simulation results using the semi-rigid dummy model were also in reasonable agreement with the test data. For comparison purpose, simulations were also performed using PAMCVS, a hybrid code which couples the finite element code PAMCRASH with the rigid body occupant code. The deformable dummy model predicted better chest acceleration than the other two models.
Technical Paper

Energy-Absorbing Polyurethane Foam to Improve Vehicle Crashworthiness

1995-02-01
950553
Federal legislation mandates that automotive OEMS provide occupant protection in collisions involving front and side impacts This legislation, which is to be phased-in over several years, covers not only passenger cars but also light-duty trucks and multipurpose passenger vehicles (MPVs) having a gross vehicle weigh rating (GVWR) of 8,500 lb (3,850 kg) or less. During a frontal impact, occupants within the vehicle undergo rapid changes in velocity. This is primarily due to rapid vehicle deceleration caused by the rigid nature of the vehicle's metal frame components and body assembly. Many of today's vehicles incorporate deformable, energy-absorbing (EA) structures within the vehicle structure to manage the collision energy and slow the deceleration which in turn can lower the occupant velocity relative to the vehicle. Occupant velocities can be higher in light-duty trucks and MPVs having a full-frame structure resulting in increased demands on the supplemental restraint system (SRS).
Technical Paper

Describing the Truck Driver Stomach and Shin-Knee Accommodation Tools

1987-08-01
871532
Truck driver shin-knee and stomach postion tools have been developed to describe where certain percentages of truck drivers position there knees and stomachs in various workspace arrangements. Separate equations describe the accommodation level for driver populations with male to female ratios of 50/50, 75/25, and a range from 90/10 to 95/5. These equations can be used as a design tool to locate the curves in vehicle space to describe the region behind which the given populations shin-knees, and stomachs would be located. Equations and curves are provided for both the left leg, which operates the clutch, and the right leg, which operates the accelerator.
Technical Paper

Describing the Truck Driver Eye and Head Accommodation Tools

1987-08-01
871531
Truck driver eye and head position tools have been developed to describe where certain percentages of truck drivers position there eyes and heads in various workspace arrangements. Separate equations describe the accommodation level for driver populations with male to female ratios of 50/50, 75/25, and a range from 90/10 to 95/5. These equations can be used as a design tool to locate the curves in vehicle space to describe the region behind which the given populations eyes and heads would be located. Equations and curves are provided for both the drivers eye and head in the side view. It has become increasingly apparent that there is a need for improved methods of accommodating truck drivers in heavy truck cab design. Currently, practices used in the automobile industry for passenger car design are utilized for the design of heavy trucks. These practices.
X