Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

Utilization of a Chassis Dynamometer for Development of Exterior Noise Control Systems

1997-05-20
972012
The development of systems and components for control of exterior noise has traditionally been done through an iterative process of on road testing. Frequently, road testing of vehicle modifications are delayed due to ambient environmental changes that prevent testing. Vehicle dynamometers used for powertrain development often had limited space preventing far field measurements. Recently, several European vehicle manufacturers constructed facilities that provided adequate space for simulation of the road test. This paper describes the first implementation of that technology in the U.S.. The facility is typical of those used world wide, but it is important to recognize some of the challenges to effective utilization of the technique to correlate this measurement to on road certification.
Technical Paper

TodayS Electronics in TodayS Vehicles

1998-10-19
98C028
Historically, the long development time required to produce a new automobile has meant that the electronics in that vehicle might lag the state-of-the-art by several years. For traditional vehicle electronics, this was certainly an appropriate delay, ensuring through extensive testing and qualification that the quality and reliability of the electronic systems met rigorous standards. However, with the growing consumer-oriented electronics content in today's vehicles, it is becoming more difficult for the automotive manufacturers to meet consumers' expectations with older technology. Couple this with the fast-paced consumer product cycle, typically nine to eighteen and the result is increasing pressure on the vehicle manufacturers from after-market electronics suppliers, who can update their product lines as fast as the component manufacturers can produce new models.
Technical Paper

The Effects of Trip Length and Oil Type (Synthetic Versus Mineral Oil) on Engine Damage and Engine-Oil Degradation in a Driving Test of a Vehicle with a 5.7L V-8 Engine

1993-10-01
932838
Extending engine-oil-change intervals is of interest from the standpoint of reducing used oil disposal and reducing time and expense of maintenance. However, the oil must be changed before serious oil degradation and engine damage occur. Three variables which influence oil degradation were chosen for investigation: base oil composition (synthetic oil versus mineral oil), trip length (short trips versus long trips), and driving schedule (degrading an oil during a given type of service, then changing to another type of service without an intervening oil change). Analysis of oil samples taken throughout the testing program indicated that type of service (freeway compared to short trip) influenced oil degradation to a greater extent than oil type. That is, API SG-quality synthetic oil in short-trip service degraded faster than borderline SG-quality mineral oil in long-trip service.
Technical Paper

The Chrysler “Sure-Brake” - The First Production Four-Wheel Anti-Skid System

1971-02-01
710248
The paper outlines testing, development, and operation of the first production four-wheel slip control system for passenger cars in the United States. The Chrysler Corp. calls the system “Sure-Brake,” but it is more generally known as “anti-skid.” The first portion of the paper deals with considerations that led Chrysler into the Sure-Brake system, the philosophy behind the system, and a detailed explanation of its operation. The second portion deals with the development and testing of the system, leading to its release as an option on the 1971 Imperial. The testing program introduced a new dimension to brake engineering. Before the advent of wheel slip control systems, many thousands of brake tests were conducted but were always terminated at the point of skid. These tests were also conducted mainly on black top or concrete roads. For the first time, thousands of stops were made at maximum deceleration on every available surface.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

THE GMR 4-4 “HYPREX” ENGINE A CONCEPT OF THE FREE-PISTON ENGINE FOR AUTOMOTIVE USE

1957-01-01
570032
DESCRIBED here is a 250-hp free-piston gasifier-turbine engine that has actually been installed in an automobile. A unique feature of this Hyprex engine is that it is a siamesed unit. The overall design has been selected, according to the author, to secure a compact, light-weight machine with improved thermal efficiency and with a reduction in general noise. Although the engine is still in the experimental stage, the author reports that analysis and results indicate it will be a serious contender for powering automotive vehicles.
Technical Paper

TFC/IW

1978-02-01
780937
TFC/IW, total fuel consumption divided by inertia (test) weight is a useful concept in analyzing the total or composite fuel economy generated in thousands of tests using the carbon balance technique in EPA Federal Test Procedure and Highway Driving Cycle. TFC/IW is a measure of drive train efficiency that requires no additional complicating assumptions. It is applicable to one test or a fleet representing many tests.
Technical Paper

Structural Composite Floorpan: Design Synthesis, Prototype, Build and Test

1992-06-01
921096
A design synthesis approach is used to design and analyze a Resin-Transfer-Molded (RTM) composite floorpan to meet the product requirements and assess the structural performance. The design envelope is based on packaging constraints representative of a production vehicle to ensure a feasible design intent. Finite element analysis of the composite design is used to guide the design and integrate all of the product performance requirements to achieve a feasible design concept. Issues discussed include the design and analysis, design features, composite material tailoring, prototype fabrication, vehicle build, and product validation. Stiffness, strength and durability tests were performed on the floorpan and the fully trimmed vehicle, and all requirements were met.
Technical Paper

Statistical Energy Analysis of Airborne and Structure-Borne Automobile Interior Noise

1997-05-20
971970
This paper describes the application of Statistical Energy Analysis (SEA) and Experimental SEA (ESEA) to calculating the transmission of air-borne and structure-borne noise in a mid-sized sedan. SEA can be applied rapidly in the early stages of vehicle design where the degree of geometric detail is relatively low. It is well suited to the analysis of multiple paths of vibrational energy flow from multiple sources into the passenger compartment at mid to high frequencies. However, the application of SEA is made difficult by the geometry of the vehicle's subsystems and joints. Experience with current unibody vehicles leads to distinct modeling strategies for the various frequency ranges in which airborne or structure-borne noise predominates. The theory and application of ESEA to structure-borne noise is discussed. ESEA yields loss factors and input powers which are combined with an analytical SEA model to yield a single hybrid model.
Technical Paper

Squeak Studies on Material Pairs

1999-05-17
1999-01-1727
Advancements in the area of noise and vibration control have succeeded in quieting the vehicle to the point that previously obscure squeak and rattles must now be addressed. One possible way to decrease the squeak levels is by judicious selection of the material friction pairs. The squeak levels produced by a given material friction pair are a function of a number of test conditions like interference, temperature, humidity and excitation frequency. This paper experimentally studies the dependence of squeak levels on these factors. Understanding the relationship between squeak and test conditions will guide the selection of materials and help us to carefully select the test conditions for squeak evaluations. It will also result in cost reductions to otherwise numerous and expensive squeak parameter testing.
Technical Paper

Squeak Studies on Material Pair Compatibility

2001-04-30
2001-01-1546
The more noise and vibration improvements are incorporated into our vehicles, the more customers notice squeaks and rattles (S&R). Customers increasingly perceive S&R as a direct indicator of vehicle build quality and durability. The high profile nature of S&R has the automotive industry striving to develop the understanding and technology of how to improve the S&R performance in the vehicle. Squeaks and itches make up a significant amount of Squeak and Rattle complaints found in today's vehicles. Squeaks and itches are the result of stick slip behavior between two interacting surfaces. Squeak itch behavior is dependent upon a large number of parameters including but not limited to: the material itself, temperature, humidity, normal load, system compliance, part geometry, velocity, surface roughness, wear, contaminants, etc. This paper will describe the analysis of sound data and friction data and the relationship between them.
Technical Paper

Sound Quality of Impulsive Noises: An Applied Study of Automotive Door Closing Sounds

1999-05-17
1999-01-1684
This paper discusses four general attributes which quantify the character of an impulsive sound event. These attributes include the time duration, amplitude and frequency content of the impulsive noise. A three dimensional plot relating time, frequency and amplitude have been developed for the presentation of the measured data. This format allows graphic illustration of the noise event, providing fast interpretation and communication of the measured sound. Application of this methodology to the sound of an automotive door closing event is presented here. Representative door closing sound events are analyzed, with correlation presented between the attributes above to dynamic events of the physical hardware within the door and vehicle systems. Modifications of the door-in-white, internal door hardware, seal systems and additional content are investigated for their effect on the sound quality of the door closing event. Finally, recommended values for these attributes are presented.
Technical Paper

Significance of Intersection Crashes for Older Drivers

1996-02-01
960457
As the driving population ages, there is a need to understand the accident patterns of older drivers. Previous research has shown that side impact collisions, usually at an intersection, are a serious problem for the older driver in terms of injury outcome. This study compares the frequency of side impact, intersection collisions of different driver age groups using state and national police-reported accident data as well as an in-depth analysis of cases from a fatal accident study. All data reveal that the frequency of intersection crashes increases with driver age. The state and national data show that older drivers have an increase frequency of intersection crashes involving vehicles crossing paths prior to the collision compared to their involvement in all crash types. When taking into account traffic control devices at an intersection, older drivers have the greatest involvement of multiple vehicle crashes at a signed intersection.
Technical Paper

SEA in Vehicle Development Part I: Balancing of Path Contribution for Multiple Operating Conditions

2003-05-05
2003-01-1546
The application of Statistical Energy Analysis (SEA) to vehicle development is discussed, with a new technique to implement noise path analysis within a SEA model to enable efficient solution and optimization of acoustic trim. A whole vehicle Performance-Based SEA model is used, in which Sound Transmission Loss (STL) and acoustic absorption coefficient characterize subsystem performance. In such a model, the net contribution from each body panel/path, such as the floor, to a specific interior subsystem, such as the driver's head space, is extremely important for vehicle interior noise development. First, it helps to identify the critical path to root-cause potential problems. Second, it is necessary in order to perform balancing of path contributions. With current software, the power based noise contribution analysis is for direct paths/adjacent subsystems.
Technical Paper

Road Transducer - Objective Brake Balance Measurement Without Vehicle Instrumentation

1987-02-01
870266
During braking, the ability to utilize available tire-road friction is determined by brake balance. Previous methods for objectively measuring balance require various degrees of vehicle instrumentation and modification. The Road Transducer is a new measurement technique based on instrumented sections of roadway. Individual braking forces developed by each wheel are measured without vehicle instrumentation, modification, or special set up. This facilitates assessment of many vehicles required for statistical analyses. Brake balance data for several hundred vehicles are presented and provide insight to the nominal levels and variability of braking efficiencies found in the field.
Technical Paper

Road Noise Modelling Using Statistical Energy Analysis Method

1995-05-01
951327
A mathematical model was developed to evaluate design options for control of road noise transmission into the interior of a passenger car. Both air-borne and structure-borne road noise over the frequency range of 200-5000 Hz was able to be considered using the Statistical Energy Analysis (SEA) method. Acoustic and vibration measurements conducted on a laboratory rolling road were used to represent the tire noise “source” functions. The SEA model was correlated to in car sound pressure level measurements to within 2-4 db accuracy, and showed that airborne noise dominated structure-borne noise sources above 400 Hz. The effectiveness of different noise control treatments was simulated and in some cases evaluated with tests.
Technical Paper

Results of the Motor Vehicle Manufacturers Association Component and Full-Vehicle Side Impact Test Procedure Evaluation Program

1985-01-01
856087
This paper presents an extensive research program undertaken to develop improved side impact test methods. The development of a component side impact test device along with an associated test procedure are reviewed. The results of accident data analysis techniques to define anatomical areas most likely to be injured during side impact and definition of test device response corridors based on human surrogate testing conducted by the Association Peugeot/Renault and the University of Heidelberg are discussed. The relationship of response corridors and accident data analysis in earlier phases of the project resulted in definition and development of a component side impact test device to represent the human thorax. A test program to evaluate and compare component and full-vehicle test results is presented.
Technical Paper

Refinement of the Interior Sound Quality of Chrysler's Dodge and Plymouth

1995-05-01
951309
The low noise and linear sound level characteristics of passenger vehicles are receiving increased scrutiny from automotive journalists. A linear noise level rise with increasing engine rpm is the first basic aspect of insuring an acceptable vehicle interior engine noise sound quality. In a typical case of structural response to engine vibration input, interior noise begins to rise with rpm, remains constant or even drops as the engine continues to accelerate, and then exhibits a noise period corresponding to the structure's natural frequency. Frequently this nonlinearity is bothersome to the customer. During the development process, Chrysler's Dodge and Plymouth Neon exhibited just such a nonlinear rise in noise level, heard within the passenger compartment, when the vehicle was accelerated through 4200 rpm.
Technical Paper

Rating Transmissions from Highway Requirements and Vehicle Specifications

1960-01-01
600009
THE GRADEABILITY formula can be used as the basic means for rating a truck transmission. By correlating the gradeabilities in the various gear ratios with a highway requirement probability curve, the per cent of time in each ratio can be obtained. The required hours of gear life for each ratio are then determined, and compared with the available gear life in the ratios. This procedure gives a detailed analysis of a transmission rating for one vehicle specification at a specified mileage between overhauls. A limitation of the system is that it cannot be applied quickly to various vehicle specifications. The paper outlines the method for constructing a nomogram to overcome this.*
X