Refine Your Search

Topic

Author

Search Results

Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

Using Life Cycle Management to Evaluate Lead-Free Electrocoat‡

1997-02-24
970696
Environmental costs are a delayed financial burden that result from product decisions made early in the product life cycle--early material choices may create regulatory and waste management costs that were not factored into the acquisition cost. This paper outlines a step-wise approach to determine decision points; environmental, health, safety and recycling (EHS&R) cost drivers that affect decisions; and sources of information required to conduct a Life Cycle Management (LCM) review. Additionally, how LCM fits into the larger concurrent engineering framework is illustrated with an electrocoat primer example. Upstream and downstream supply chain processes are reviewed, as well as organizational challenges that affect the decision process.
Technical Paper

Traction Batteries - Their Effects on Electric Vehicle Performance

1997-02-24
970240
A few years ago, electric vehicles (EVs) were considered to be objects of the distant future … technology that was still in its infancy, not yet ready and for those outside the “high pollution” areas probably not even worth the expenditure. But the present day scenario has changed dramatically. In the United States of America, several states are following California's lead and the need for the operating fleets to commit to purchase of Zero Emission vehicles (ZEVs) is becoming a requirement. In order to make the technology available to the utilities … as well as the public, state of the art, affordable batteries are essential for making EVs a reality and an effective means of transportation.
Technical Paper

The Electronically Controlled 6.5L Diesel Engine

1993-11-01
932983
For model year 1994, General Motors has completed the roll out of the 6.5L Diesel Engine, with the introduction of the light duty certified naturally aspirated and turbocharged engines. At the heart of the expanded use of the 6.5L is a new electronic powertrain control system. The objectives for this system were to produce an engine that has less variation, is easier to assemble, low cost and capable of meeting both heavy and light duty future emissions requirements. Control features include Fuel Quantity and Timing, EGR, Wastegate, Glow Plugs, Transmission, Cruise Control and Diagnostics.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
Technical Paper

The Effect of Exhaust System Geometry on Exhaust Dilution and Odor Intensity

1971-02-01
710219
Diesel exhaust gas dilution and odor intensity were measured in the immediate vicinity of a transit bus equipped with a rear-mounted horizontal exhaust pipe, a rear-mounted vertical exhaust pipe, and a roof-top diffusion system. Exhaust dilution ratios were measured indoors during vehicle idle operation, using propane added to the exhaust gas as a tracer. Exhaust odor intensities were measured also indoors during vehicle idle operation by a human panel, using a threshold odor measurement technique. On the average, the dilution of the exhaust gas around the bus with the vertical exhaust pipe was about eight times greater than it was with the horizontal pipe. Odor intensity, as measured by the threshold response distance, was about 35% less with the vertical pipe than with the horizontal pipe. The roof-top diffuser was not as effective as the vertical exhaust pipe in increasing exhaust gas dilution or in reducing exhaust odor intensity.
Technical Paper

The Chrysler “Quick Shift Neon” Automanual Transmission Project

1998-11-16
983082
Formula One motorsport competition, ever seeking increases in powertrain responsiveness and efficiency, has utilized electronically-shifted manual transmissions for nearly a decade. With the advent of this technology for passenger car usage ( for example the Magneti Marelli “Selespeed” system), new levels of powertrain electronic control become possible. At the same time, world-wide emission and fuel economy standards have driven powertrain designers to seek transmissions that are multi-faceted; able to offer manual transmission levels of driveline efficiency while simultaneously offering the ability to be automatically controlled. This paper will document a 1995-1996 Chrysler advanced powertrain concept study that culminated in a fully driveable, fully automatic, manual 5 speed transmission Neon coupe.
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
Technical Paper

The Automobile: Unwanted Technology - The Later Years Part I: Cars and Crises 1960-1990 Part II: The Dawning of Automotive Electronics

1992-02-01
920845
Several factors have influenced the size and design of domestic passenger cars over the past 30 years. Of most significance has been the influx of imported cars, initially from Europe, later from Japan. Interspersed within the fabric of this influx have been two energy crises and several recessions, and the onset of safety, emission, and energy regulations. These factors have led to various responses by domestic manufacturers as indicated by the types of products and vehicle systems that they have introduced during this period. This paper chronicles both the events as well as the responses.
Technical Paper

Technical Highlights of the Dodge Compressed Natural Gas Ram Van/Wagon

1992-08-01
921551
An OEM Natural Gas Vehicle (NGV) has been developed to address recently enacted Clean-Fuel Vehicle legislation. The NGV incorporates advanced fuel storage and fuel metering technologies to produce very low emissions and to provide superior customer value compared to aftermarket conversion units.
Technical Paper

TFC/IW

1978-02-01
780937
TFC/IW, total fuel consumption divided by inertia (test) weight is a useful concept in analyzing the total or composite fuel economy generated in thousands of tests using the carbon balance technique in EPA Federal Test Procedure and Highway Driving Cycle. TFC/IW is a measure of drive train efficiency that requires no additional complicating assumptions. It is applicable to one test or a fleet representing many tests.
Technical Paper

Squeak Studies on Material Pairs

1999-05-17
1999-01-1727
Advancements in the area of noise and vibration control have succeeded in quieting the vehicle to the point that previously obscure squeak and rattles must now be addressed. One possible way to decrease the squeak levels is by judicious selection of the material friction pairs. The squeak levels produced by a given material friction pair are a function of a number of test conditions like interference, temperature, humidity and excitation frequency. This paper experimentally studies the dependence of squeak levels on these factors. Understanding the relationship between squeak and test conditions will guide the selection of materials and help us to carefully select the test conditions for squeak evaluations. It will also result in cost reductions to otherwise numerous and expensive squeak parameter testing.
Technical Paper

Squeak Studies on Material Pair Compatibility

2001-04-30
2001-01-1546
The more noise and vibration improvements are incorporated into our vehicles, the more customers notice squeaks and rattles (S&R). Customers increasingly perceive S&R as a direct indicator of vehicle build quality and durability. The high profile nature of S&R has the automotive industry striving to develop the understanding and technology of how to improve the S&R performance in the vehicle. Squeaks and itches make up a significant amount of Squeak and Rattle complaints found in today's vehicles. Squeaks and itches are the result of stick slip behavior between two interacting surfaces. Squeak itch behavior is dependent upon a large number of parameters including but not limited to: the material itself, temperature, humidity, normal load, system compliance, part geometry, velocity, surface roughness, wear, contaminants, etc. This paper will describe the analysis of sound data and friction data and the relationship between them.
Technical Paper

Selection and Development of a Particulate Trap System for a Light Duty Diesel Engine

1992-02-01
920142
In order to meet progressively stringent regulations on particulate emission from diesel engines, GM has developed and tested a variety of trap oxidizer systems over the years. A particulate trap system for a light duty diesel engine has been selected and developed based on this experience, with particular emphasis on production feasibility. The system components have been designed and developed in collaboration with potential suppliers, to the extent possible. The technical performance of this system has been demonstrated by successful system durability testing in the test cell and vehicle experience in computer controlled automatic operation mode. Although the system shows promise, its production readiness will require more development and extensive vehicle validation under all operating conditions.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Reducing Cold-Start Emissions by Catalytic Converter Thermal Management

1995-02-01
950409
Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m2K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146°C after the 23-hour cold soak at 27°C.
X