Refine Your Search

Topic

Author

Search Results

Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

The New Chrysler Wind Tunnel

1973-02-01
730239
The Chrysler wind tunnel is a closed-circuit, single-return, semiopen jet facility used for performing engine cooling, transmission cooling, engine compartment airflow, underhood component temperature, air-conditioning, and other types of tests. It operates over a 0-120 mph speed range with 400 hp rear-wheel power absorption capacity. Special provisions have been made for idle, city traffic, and tail wind tests. Facility controls provide precise set-point capability, and comprehensive instrumentation and data acquisition systems permit measurement of many parameters and real time data reduction.
Technical Paper

The Effects of Trip Length and Oil Type (Synthetic Versus Mineral Oil) on Engine Damage and Engine-Oil Degradation in a Driving Test of a Vehicle with a 5.7L V-8 Engine

1993-10-01
932838
Extending engine-oil-change intervals is of interest from the standpoint of reducing used oil disposal and reducing time and expense of maintenance. However, the oil must be changed before serious oil degradation and engine damage occur. Three variables which influence oil degradation were chosen for investigation: base oil composition (synthetic oil versus mineral oil), trip length (short trips versus long trips), and driving schedule (degrading an oil during a given type of service, then changing to another type of service without an intervening oil change). Analysis of oil samples taken throughout the testing program indicated that type of service (freeway compared to short trip) influenced oil degradation to a greater extent than oil type. That is, API SG-quality synthetic oil in short-trip service degraded faster than borderline SG-quality mineral oil in long-trip service.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
Technical Paper

The Development of Auto Temp II

1972-02-01
720288
The development of the AUTO TEMP II Temperature Control System used in Chrysler Corp. vehicles is summarized. A description of the design, development, function, and manufacturing aspects of the control system is presented, with emphasis on unique control parameters, reliability, serviceability, and check-out of production assemblies. Auto Temp II was developed by Chrysler in conjunction with Ranco Incorporated. The servo-controlled, closed-loop system, which has a sensitivity of 0.5 F, utilizes a water-flow control valve for temperature control, along with a cold engine lockout. The basic components are: sensor string, servo, and amplifier. All automatic functions involving control of mass flow rate, temperature, and distribution of the air entering the vehicle, are encompassed in one control unit. All components are mechanically linked through the gear train and are responsive to the amplifier through the feedback potentiometer.
Technical Paper

The Chrysler PowerFlite Transmission

1954-01-01
540261
THE design and construction of the PowerFlite automatic transmission are described by the authors. It is of the torque converter type, some models being water-cooled, while others are direct air cooled. Details of the hydraulic controls are explained, including the one-piece shift valve and the shuttle valve for controlling closed-throttle shifts. It is claimed that this transmission has relative simplicity, light weight, and smoothness of operation.
Technical Paper

The Car as a Peripheral, Adapting a Portable Computer to a Vehicle Intranet

1998-10-19
98C030
This paper discusses the feasibility and issues associated with integrating a consumer off-the shelf product into a vehicle. For this evaluation, we selected a handheld personal computer (HPC), cellular telephone and modem to integrate with the vehicle audio, climate and system controls. Connectivity between the HPC and the vehicle is established by the use of the standard infrared serial data link that comes with the HPC. Connectivity outside the vehicle uses a cellular telephone for voice and a cellular digital packet data (CDPD) modem for data. This system is built into the Dodge ESX-2 hybrid powered concept vehicle for demonstration.
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
Technical Paper

The Automotive Primary Power Supply System

1974-02-01
741208
This paper describes the major electrical characteristics of the automotive power supply system. It is a compilation of existing data and new information that will be helpful to both the electrical component and electronic assembly designers. Previously available battery/alternator data is organized to be useful to the designer. New dynamic information on battery impedance is displayed along with “cogging” transients, regulation limits and load dump characteristics.
Technical Paper

The Application of Graphics Engineering to Gear Design

1986-10-01
861347
A highly competitive market and increased emphasis on quality have gear designers searching for additional tools to produce accurate gearsets in a condensed timeframe. To meet this challenge, a Graphics Engineering method has been developed to enhance traditional gear design techniques. Graphics Engineering links interactive graphics, finite element analysis and solid modeling into a graphics/analysis development package. Starting with gear and cutter data derived by conventional techniques, it provides cutter paths and involute profiles for geometry, strength, and physical property analysis. The comprehensive data obtained through Graphics Engineering provides a powerful tool for the gear designer to increase gearset accuracy and reduce design iterations.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

The 1978 Chrysler Torque Converter Lock-Up Clutch

1978-02-01
780100
A torque converter lock-up clutch was introduced by Chrysler Corporation in a majority of its passenger cars in the 1978 model year. The lock-up clutch improves fuel economy by eliminating torque converter slip in direct gear above a predetermined speed. The clutch and its controls were designed to fit within the confines of the existing transmission. The development of the clutch was primarily concerned with achieving adequate endurance life, good shift quality and isolation of torsional vibrations.
Technical Paper

Technical Highlights of the Dodge Compressed Natural Gas Ram Van/Wagon

1992-08-01
921551
An OEM Natural Gas Vehicle (NGV) has been developed to address recently enacted Clean-Fuel Vehicle legislation. The NGV incorporates advanced fuel storage and fuel metering technologies to produce very low emissions and to provide superior customer value compared to aftermarket conversion units.
Technical Paper

TFC/IW

1978-02-01
780937
TFC/IW, total fuel consumption divided by inertia (test) weight is a useful concept in analyzing the total or composite fuel economy generated in thousands of tests using the carbon balance technique in EPA Federal Test Procedure and Highway Driving Cycle. TFC/IW is a measure of drive train efficiency that requires no additional complicating assumptions. It is applicable to one test or a fleet representing many tests.
Technical Paper

Studying Valve Dynamics with Electronic Computers

1962-01-01
620289
Dynamic conditions of automotive type valve trains have been investigated by means of digital computers. It has been possible to include the effect of such nonlinearities as valve lash, linkage separation, valve seating, and valve spring surge. Comparison with experimental results has shown that computer solutions are realistic. The advantage of being able to simulate and predict performance of any proposed type of valve train is obvious. This paper presents methods of approach for analyzing valve dynamics, correlation of computed results with experimental values, and examples of application of interrelated methods. Included in this paper are: (1) Methods of approach for analyzing valve dynamics, (2) Correlation of computed results with experimental values and, (3) Examples of application of interrelated methods.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
X