Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

Transverse Anisotropic Modeling of Honeycomb Extruded Polypropylene Foam in LS-Dyna to Optimize Energy Absorption Countermeasures

2005-04-11
2005-01-1222
To meet automotive legal, consumer and insurance test requirements, the process for designing energy absorption countermeasures usually comprises Finite Element simulations of the specified test. Finite element simulations are used first to see if there is a need for an Energy Absorption countermeasure at all and if so, what type, material and shape. A widely used class of energy absorption countermeasures in automotive interior applications is honeycomb extruded polypropylene foams (HXPP). Under compression, these foams exhibit a constant plateau stress until late densification. This enables these foams to minimize packaging space for a given amount of energy to be absorbed or maximize energy absorption for a given packaging space. Robust and easy to use isotropic CAE material models have been developed for HXPP, however the true material properties are anisotropic and such a material model could be necessary in some cases.
Technical Paper

Polyurethane Foam Systems For NVH and Improved Crashworthiness

2001-04-30
2001-01-1467
Recently, automotive engineers have been looking at rigid polyurethane foam systems for the advantages their application brings to vehicle design and performance. The benefits range from NVH management achieved through effective body cavity sealing and improved structural dynamics, to enhanced vehicle crashworthiness. These benefits can be realized through application of polyurethane foam systems designed for energy management. These systems offer multifunctional, low cost solutions to traditional approaches and can be modeled early in the vehicle design stage. In many cases, the overall vehicle mass is reduced as reinforcements are eliminated and/or sheet metal thickness is decreased. Dow Automotive has developed a family of water blown polyurethane foams specifically for these applications. Development has focused on foam systems designed for impact optimization, allowing OEM's to optimize the body structure content.
Technical Paper

Polyurethane Foam Inserts for NVH and Structural Applications

2004-03-08
2004-01-0461
The application of two-component polyurethane (PU) foam materials for acoustical and structural performance enhancements in vehicle structures have increased significantly in the past ten years. The benefits include NVH management (through effective cavity sealing), body stiffness improvements and energy management in crash applications. These PU foams can either be pumped into body cavities in the OEM assembly plants (bulk applied) or can be pre-molded into Structural Foam Inserts (SFI) and installed in the body-shop prior to full frame assembly. The choice of application type depends on vehicle-specific requirements and assembly plant criteria. The chemistry, plant application and benefits associated with bulk PU foam has already been cited in previous work.1, 2, 3 This paper showcases BETAFOAM™ SFI technology developed by Dow Automotive that complements traditional bulk foam technology.
Technical Paper

New Low MDI Polyurethane Foam System Replaces Heat Reactive Baffles in NVH Applications

2000-03-06
2000-01-1387
Low density polyurethane foam, applied in general assembly, is being used as a replacement for rubber-based heat reactive baffles in automobile cavities to inhibit noise transmittance. Most chemically reactive urethane foam systems used in barrier applications are MDI-based (diphenylmethane diisocyanate). The use of classical MDI-based technology in assembly plants typically requires substantial levels of ventilation [1]. High capital and operating expenses associated with plant ventilation systems have hindered the growth of polyurethane technology. This paper describes benefits of using a low MDI polyurethane foam system in place of classical two-component MDI-based foam systems and conventional rubber-based heat reactive baffles. Severe industrial hygiene testing has indicated that ventilation requirements to use the low MDI foam system in assembly plants may be greatly reduced.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper

Design, Application Development, and Launch of Polyurethane Foam Systems in Vehicle Structures

2003-03-03
2003-01-0333
The use of two-component polyurethane foam materials to improve sealing, stiffness, and crash performance in vehicle structures has increased significantly in the past 10 years. The proven cost and performance advantages associated with polyurethane chemistry, along with recent development efforts by Dow Automotive to minimize industrial hygiene concerns traditionally associated with polyurethane use [1], have resulted in increased activities associated with design, application development, and launch of foam systems in the automotive industry. This paper describes the key considerations that must be addressed to successfully incorporate polyurethane foams into vehicle structures from design, application development, and launch perspectives.
Technical Paper

A New 1:1 Low MDI Acoustical Foam System for Cavity Sealing Applications

2005-05-16
2005-01-2276
The well-known hazards of diphenylmethane diisocyanate (MDI) have resulted in the development of foams with low MDI emissions for use in vehicle body cavities. While low MDI acoustic foams have been successfully launched in the automotive market, non-standard dispense equipment has been required. The latest low MDI acoustic foam development is dispensed via standard meter mix equipment, at the volumetric ratio of 1:1, enabling capital reduction for ventilation and application processing. This paper describes the benefits associated with using a 1:1 low MDI foam system. Industrial hygien testing and qualification of this system as low MDI are reviewed. Acoustical performance testing including insertion loss and sound absorption are discussed.
X