Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Windshield Wiper System Motor Selection and Application

1971-02-01
710257
The selection of a motor for a windshield wiper system requires a full analysis of all system variables, in addition to strict adherence to tests and development procedures. Following a well-programmed procedure will assure complete and adequate windshield wiper prime mover selection and successful application. There are five basic steps discussed: 1. Determination of wiper parameters. 2. Motor performance. 3. System load determination. 4. Calibration and matching of wiper motor to system. 5. Testing and evaluating.
Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Technical Paper

Vehicular Emission Performance Simulation

2012-04-16
2012-01-1059
Several emission performance tests like Butane Working Capacity (BWC), Cycle Life, and ORVR load tests are required for the certification of a vehicle; these tests are both expensive and time consuming. This paper presents a test process based upon analytical simulation of BWC of an automotive carbon canister in order to greatly reduce the cost incurred in physical tests. The computational model for the fixed-bed system of a carbon canister is based upon non-equilibrium, non-Isothermal, and non-adiabatic algorithm to simulate the real life loading/purging of hydrocarbon vapors from this device.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Vehicle Underbody Thermal Simulation Using Computational Fluid Dynamics

1999-03-01
1999-01-0579
This study was initiated to evaluate the thermal characteristics of a vehicle underbody using math-based computational fluid dynamics (CFD) simulation based on 3-D configuration. Simulations without heat shields were carried out for different vehicle operating conditions which placed several areas at risk of exceeding their thermal design limits. Subsequently, simulations with several heat shield designs were performed. Results show that areas at risk without shields are well within thermal design limits when shielded. Part of the CFD simulation results were compared with experimental data, with reasonable correlation. The CFD approach can provide useful design information in a very short time frame.
Journal Article

Vehicle Sideslip Angle EKF Estimator based on Nonlinear Vehicle Dynamics Model and Stochastic Tire Forces Modeling

2014-04-01
2014-01-0144
This paper presents the extended Kalman filter-based sideslip angle estimator design using a nonlinear 5DoF single-track vehicle dynamics model with stochastic modeling of tire forces. Lumped front and rear tire forces have been modeled as first-order random walk state variables. The proposed estimator is primarily designed for vehicle sideslip angle estimation; however it can also be used for estimation of tire forces and cornering stiffness. This estimator design does not rely on linearization of the tire force characteristics, it is robust against the variations of the tire parameters, and does not require the information on coefficient of friction. The estimator performance has been first analyzed by means of computer simulations using the 10DoF two-track vehicle dynamics model and underlying magic formula tire model, and then experimentally validated by using data sets recorded on a test vehicle.
Technical Paper

Vehicle Flow Measurement and CFD Analysis for Wind Noise Assessment

1997-02-24
970403
A time cost effective methodology has been developed for the prediction of the A-pillar vortex formation and the side and the rear window flow separation for the purpose of wind noise assessment. This methodology combines a simplified Computational Fluid Dynamics (CFD) model and wind tunnel test data by CFD post-processing tools. The solution of the simplified CFD model provides background data for the whole flow field, but it lacks detail features such as mirror, sealing groove and glass in-set, which are locally important but difficult to mesh and require a very fine mesh resolution. The wind tunnel test data was taken in the specific areas of interest at the A-pillar, side window, rear window area, and roof from a real automotive. Then the wind tunnel test data was superposed upon the simplified CFD model to correct the numerical error due to geometry simplification and insufficient mesh resolution.
Technical Paper

Vehicle Electrical System Computer Aided Design (VESCAD) Tool

1993-03-01
930841
The Vehicle Electrical System Computer Aided Design (VESCAD) tool is a means by which the vehicle electrical system, including all wiring and the components attached to wiring can be laid out over an outline of the planform (looking down on the vehicle) view of the vehicle. This graphical representation of the vehicle electrical system is linked to a database that contains the definition of all the wiring of the vehicle plus electrical component attributes. The vehicle electrical system can be composed and completely manipulated graphically, using a mouse, and the database is dynamically changed, including automatic re-routing of the wiring in the wiring harnesses. A complete series of reports can be generated once a vehicle electrical system is configured using VESCAD. All of the reports can be keyed by component(s), harness(es), subsystem(s) or the entire vehicle.
Technical Paper

Vehicle Dynamics Synthesis Techniques for the Integration of Chassis Systems in Total Vehicle Design

1992-09-01
922104
A practical methodology is presented for the synthesis of Chassis Systems and their integration into a vehicle design to achieve a specified vehicle dynamic performance. By focusing on the fundamental performance requirements of gain, response time, and stability in midrange handling and the higher level design parameters of front and rear cornering compliance it is possible to find optimum values for these design parameters. The balancing of these higher level design parameters, in the context of overall vehicle performance, determines primary system requirements for the front suspension, rear suspension, tires, and steering system which may in turn be met by a variety of specific hardware designs.
Technical Paper

Vehicle Dynamics Fingerprint Process

1999-03-01
1999-01-0117
The dynamic characteristics of a vehicle are an important part of the driver's experience. Ford Motor Company is actively pursuing a leadership role in this arena. To achieve this goal, all the necessary information to complete the vehicle dynamics picture of a vehicle must be gathered in an efficient and well-organized manner. A process was developed to fingerprint a vehicle so that this information could drive vehicle tuning, new Computer Aided Engineering (CAE) models, correlate existing CAE models, support problem resolution and conduct target setting. This paper will discuss a Vehicle Dynamics Fingerprint Process in detail and explain the steps involved.
Technical Paper

Vehicle Disc Brake Squeal Simulations and Experiences

1999-05-18
1999-01-1738
Brake related warranty costs are a major concern to the automotive industry. Large part of these costs are due to noise, more particularly due to the brake squeal complaints. Computer-aided engineering solutions have attracted a lot of attention from the engineering and development community for more effective brake product development. Recently, three brake squeal analysis methods were implemented on disc type brakes in a vehicle program at Ford. This paper summarizes the results and documents the experience obtained during implementation in the vehicle CAE process.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Vehicle Crashworthiness Analysis Using Numerical Methods and Experiments

1992-06-01
921075
Past studies have shown the applicability of advanced numerical methods for crashworthiness simulation. Lumped parameter (LP) modeling and finite element (FE) modeling have been demonstrated as two useful methodologies for achieving this endeavor. Experimental tests and analytical modeling using LP and FE techniques were performed on an experimental vehicle in order to evaluate the compatibility and interrelationship of the two numerical methods for crashworthiness simulation. The objective of the numerical analysis was to simulate the vehicle crashworthiness in a 0 degree, 48.6 KPH frontal impact. Additionally, a single commercial software, LS-DYNA3D, was used for both the LP and FE analysis.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Vehicle Aerodynamic Shape Optimization

2011-04-12
2011-01-0169
Recent advances in morphing, simulation, and optimization technologies have enabled analytically driven aerodynamic shape optimization to become a reality. This paper will discuss the integration of these technologies into a single process which enables the aerodynamicist to optimize vehicle shape as well as gain a much deeper understanding of the design space around a given exterior theme.
Technical Paper

Variable Displacement by Engine Valve Control

1978-02-01
780145
Intake and exhaust valve control has been combined with engine calibration control by an on-board computer to achieve a Variable Displacement Engine with improved BSFC during part throttle operation. The advent of the on-board computer, with its ability to provide integrated algorithms for the fast accurate flexible control of the entire powertrain, has allowed practical application of the valve disabler mechanism. The engine calibration basis and the displacement selection criteria are discussed, as are the fuel economy, emissions and behavior of a research vehicle on selected drive cycles ( Metro, Highway and Steady State ). Additionally, the impact upon vehicle driveability and other related subsystems ( e.g., transmission ) is addressed.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Utilization of a Chassis Dynamometer for Development of Exterior Noise Control Systems

1997-05-20
972012
The development of systems and components for control of exterior noise has traditionally been done through an iterative process of on road testing. Frequently, road testing of vehicle modifications are delayed due to ambient environmental changes that prevent testing. Vehicle dynamometers used for powertrain development often had limited space preventing far field measurements. Recently, several European vehicle manufacturers constructed facilities that provided adequate space for simulation of the road test. This paper describes the first implementation of that technology in the U.S.. The facility is typical of those used world wide, but it is important to recognize some of the challenges to effective utilization of the technique to correlate this measurement to on road certification.
X