Refine Your Search



Search Results

Technical Paper

Vehicle Underbody Thermal Simulation Using Computational Fluid Dynamics

This study was initiated to evaluate the thermal characteristics of a vehicle underbody using math-based computational fluid dynamics (CFD) simulation based on 3-D configuration. Simulations without heat shields were carried out for different vehicle operating conditions which placed several areas at risk of exceeding their thermal design limits. Subsequently, simulations with several heat shield designs were performed. Results show that areas at risk without shields are well within thermal design limits when shielded. Part of the CFD simulation results were compared with experimental data, with reasonable correlation. The CFD approach can provide useful design information in a very short time frame.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Vehicle Crashworthiness Analysis Using Numerical Methods and Experiments

Past studies have shown the applicability of advanced numerical methods for crashworthiness simulation. Lumped parameter (LP) modeling and finite element (FE) modeling have been demonstrated as two useful methodologies for achieving this endeavor. Experimental tests and analytical modeling using LP and FE techniques were performed on an experimental vehicle in order to evaluate the compatibility and interrelationship of the two numerical methods for crashworthiness simulation. The objective of the numerical analysis was to simulate the vehicle crashworthiness in a 0 degree, 48.6 KPH frontal impact. Additionally, a single commercial software, LS-DYNA3D, was used for both the LP and FE analysis.
Technical Paper

Utilization of a Chassis Dynamometer for Development of Exterior Noise Control Systems

The development of systems and components for control of exterior noise has traditionally been done through an iterative process of on road testing. Frequently, road testing of vehicle modifications are delayed due to ambient environmental changes that prevent testing. Vehicle dynamometers used for powertrain development often had limited space preventing far field measurements. Recently, several European vehicle manufacturers constructed facilities that provided adequate space for simulation of the road test. This paper describes the first implementation of that technology in the U.S.. The facility is typical of those used world wide, but it is important to recognize some of the challenges to effective utilization of the technique to correlate this measurement to on road certification.
Technical Paper

Using a Geometric Toolkit to Link Finite Element Calculations in Sheet Metal Forming Analysis

Sheet metal forming of automobile body panel consists of two processes performed in series: binder forming and punch forming. Due to differences in deformation characteristics of the two forming processes, their analysis methods are different. The binder wrap surface shape and formed part shape are calculated using different mathematical models and different finite element codes, e.g., WRAPFORM and PANELFORM, respectively. The output of the binder forming analysis may not be directly applicable to the subsequent punch forming analysis. Interpolation, or approximation, of the calculated binder wrap surface geometry is needed. This surface representation requirement is carried out using computer aided geometric design tools. This paper discusses the use of such a tool, SURFPLAN, to link WRAPFORM and PANELFORM calculations.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

The Manufacturing Manager and the Computer

This paper discusses the development and execution of a unique one-day, hands-on seminar designed to introduce top-level manufacturing managers to the computer. Total emphasis is on manufacturing applications, and each manager is afforded an opportunity to use the computer himself. The mystery of data cards, teletype terminals, and CRTs is removed during line balancing, simulation, and process control work sessions. The seminar was developed by General Motor's Manufacturing Development Activity for internal presentation to GM managers.
Technical Paper

The General Motors Driving Simulator

A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Statistical Energy Analysis of Airborne and Structure-Borne Automobile Interior Noise

This paper describes the application of Statistical Energy Analysis (SEA) and Experimental SEA (ESEA) to calculating the transmission of air-borne and structure-borne noise in a mid-sized sedan. SEA can be applied rapidly in the early stages of vehicle design where the degree of geometric detail is relatively low. It is well suited to the analysis of multiple paths of vibrational energy flow from multiple sources into the passenger compartment at mid to high frequencies. However, the application of SEA is made difficult by the geometry of the vehicle's subsystems and joints. Experience with current unibody vehicles leads to distinct modeling strategies for the various frequency ranges in which airborne or structure-borne noise predominates. The theory and application of ESEA to structure-borne noise is discussed. ESEA yields loss factors and input powers which are combined with an analytical SEA model to yield a single hybrid model.
Technical Paper

Simulation of the Flow-Field Around a Generic Tractor-Trailer Truck

In the present work computational fluid dynamics (CFD) simulations of the flow field around a generic tractor-trailer truck are presented and compared with corresponding experimental measurements. A generic truck model was considered which is a detailed 1/8th scale replica of a Class-8 tractor-trailer truck. It contained a number of details such as bumpers, underbody, tractor chassis, wheels, and axles. CFD simulations were conducted with wind incident on the vehicle at 0 and 6 degree yaw. Two different meshing strategies (tet-dominant and hex-dominant) and three different turbulence models (Realizable k-ε, RNG k-ε, and DES) are considered. In the first meshing strategy an unstructured tetrahedral mesh was created over a large region surrounding the vehicle and in its wake. In the second strategy the mesh was predominantly hexahedral except for a few narrow regions around the front end and the underbody which were meshed with tetrahedral cells owing to complex topology.
Technical Paper

Simulation of Densification in Powder Metal Forging

Finite Element Method (FEM) simulation of the powder metal forging process can be a useful tool in new product or process development because the simulation provides tooling load estimates, press size requirements, preform design feasibility and allows accurate and inexpensive parametric studies of forging process variables. Several examples of simulations using ALPID-P code are presented. Axisymmetric and plane strain simulations at several cross sections of an automotive P/M connecting rod forging indicate that die wall friction has a large effect on the densification process. Also, simulations indicate a significant die wall velocity effect on densification.
Technical Paper

Simulation and Validation of IC Engine Swirl/Tumble Using Different Meshing Strategies

Swirl/tumble are rotational flow inside the combustion chamber. Fluent Computational Fluid Dynamics (CFD) software has been successfully used to simulate engine swirl and tumble flow. Two mesh approaches are possible within Fluent software to calculate transient engine swirl and tumble. One approach uses hybrid mesh with remeshing, while the other approach uses hex/wedge mesh with layering. The hybrid method employs tetrahedral remeshing, and is easier to set up compared to hex/wedge method for which only layering is used. Being easier to use, the hybrid method raises some concerns about result accuracy due to higher numerical diffusion associated with tet elements compared to the corresponding hex/wedge elements used for layering approach. This paper examines the two mesh approaches in terms of result accuracy for two engines, one SI and one diesel. The results are compared with PIV data for the SI engine.
Technical Paper

Significance of Intersection Crashes for Older Drivers

As the driving population ages, there is a need to understand the accident patterns of older drivers. Previous research has shown that side impact collisions, usually at an intersection, are a serious problem for the older driver in terms of injury outcome. This study compares the frequency of side impact, intersection collisions of different driver age groups using state and national police-reported accident data as well as an in-depth analysis of cases from a fatal accident study. All data reveal that the frequency of intersection crashes increases with driver age. The state and national data show that older drivers have an increase frequency of intersection crashes involving vehicles crossing paths prior to the collision compared to their involvement in all crash types. When taking into account traffic control devices at an intersection, older drivers have the greatest involvement of multiple vehicle crashes at a signed intersection.
Technical Paper

Rear Full Overlap High Speed Car-to-Car Impact Simulation

A rear full overlap car-to-car high speed impact simulation using the DYNA3D Finite Element Software was performed to examine the crush mode for rear structure of a vehicle and to observe the effect of rear bumper system in order to maintain the fuel system integrity. The study was conducted first for two different bumper system configurations, namely: (1) validating the model for struck vehicle with steel rear bumper system, (2) simulating rear end collision with composite rear bumper system attached to the rear rails of struck vehicle. Later a third simulation of the model was conducted with a viable design modification to the composite bumper system for improved crashworthiness. It was identified that a more comprehensive FEA model of the bullet car including front end structure, powertrain components, cooling system and other components which constitute the load paths should be incorporated in the analysis to obtain more meaningful correlation and crashworthiness prediction.
Technical Paper

Prediction of Pollutant Concentration Variation Inside a Turbulent Dispersing Plume Using PDF and Gaussian Models

In order to evaluate the impact of emission of pollutants on the environment, it has become increasingly important that the dispersion of pollutants be predicted accurately. Recently, USEPA has proposed stringent guidelines for regulating the diesel exhaust emissions, specifically, NOx, COx, SOx, and particulate matter (PM) due to green house effect, and ozone depletion. Modeling pollutant transport in the atmospheric environment is complicated by the fact that there are many turbulent mixing time scales and spatial scales present which directly influence the dispersion of the plume. The traditional approach to predicting pollutant dispersion in the atmosphere is the use of Gaussian plume models. The Gaussian models are based on a steady state assumption, and they require the flow to be in a homogeneous and stationary turbulence state.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

On Predicting Aeroacoustic Performance of Ducts with Broadband Noise Source Models

A numerical method of predicting aeroacoustic performance of HVAC ducts is presented here. The method comprises of two steps. First, the steady state flow structure inside a duct is simulated using computational fluid dynamics (CFD). A k-epsilon based turbulence model is used. In the second step broadband noise source models are used to estimate the sound power generation within the duct. In particular, models estimating dipole and quadrupole sound source strengths are studied. A baseline generic duct geometry was studied with 3 additional design variations. The loudness rankings of these three designs were determined numerically. Simultaneously, the sound generated by these three designs was measured on a flow bench with a microphone kept downstream of the duct outlet. The numerically predicted loudness rankings were compared with experimentally determined rankings and the two are found to be in agreement, thus validating the numerical method.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.