Refine Your Search

Topic

Author

Search Results

Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

The Next Generation Northstar DOHC 4.6L V8 Engine with Four-Cam Continuously Variable Valve Timing for Cadillac

2003-03-03
2003-01-0922
A new generation Northstar DOHC V8 engine has been developed for a new family of rear-wheel-drive (RWD) Cadillac vehicles. The new longitudinal engine architecture includes strategically selected technologies to enable a higher level of performance and refinement. These technologies include four-cam continuously variable valve timing, low restriction intake and exhaust manifolds and cylinder head ports, a steel crankshaft, electronic throttle control, and close-coupled catalysts. Additional design features beyond those required for RWD include optimized block ribbing, improved coolant flow, and a newly developed lubrication and ventilation system for high-speed operation and high lateral acceleration. This new design results in improved performance over the entire operating range, lower emissions, improved fuel economy, improved operating refinement, and reduced noise/vibration/harshness (NVH).
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

The CO2 Benefits of Electrification E-REVs, PHEVs and Charging Scenarios

2009-04-20
2009-01-1311
Reducing Carbon Dioxide (CO2) emissions is one of the major challenges for automobile manufacturers. This is driven by environmental, consumer, and regulatory demands in all major regions worldwide. For conventional vehicles, a host of technologies have been applied that improve the overall efficiency of the vehicle. This reduces CO2 contributions by directly reducing the amount of energy consumed to power a vehicle. The hybrid electric vehicle (HEV) continues this trend. However, there are limits to CO2 reduction due to improvements in efficiency alone. Other major improvements are realized when the CO2 content of the energy used to motivate vehicles is reduced. With the introduction of Extended Range Electric Vehicles (E-REVs) and Plug-in HEVs (PHEVs), electric grid energy displaces petroleum. This enables the potential for significant CO2 reductions as the CO2 per unit of electrical energy is reduced over time with the improving mix of energy sources for the electrical grid.
Technical Paper

Tank-to-Wheels Preliminary Assessment of Advanced Powertrain and Alternative Fuel Vehicles for China

2007-04-16
2007-01-1609
Well-to-Wheels analyses are important tools that provide a rigorous examination and quantify the environmental burdens associated with fuel production and fuel consumption during the vehicle use phase. Such assessments integrate the results obtained from the Well-to-Tank (WtT) and the Tank-to-Wheels (TtW) analysis components. The purpose of this study is to provide a preliminary Tank-to-Wheels assessment of the benefits associated with the introduction of alternative powertrains and fuels in the Chinese market by the year 2015 as compared to the results obtained with conventional internal combustion engine vehicles (ICEVs). An emphasis is given on the vehicles powered by those fuels that have the potential to play a major role in the Chinese auto-sector, such as: M10, M85, E10, E85, Di-methyl Ether (DME) and Coal-to-Liquids (CTL). An important conclusion of this report is that hybridization reduces fuel consumption in all propulsion systems.
Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Technical Paper

Rationale for Technology Selections in GM's PNGV Precept Concept Car Based on Systems Analysis

2000-04-02
2000-01-1567
The CY2000 cornerstone goal of the Partnership for a New Generation of Vehicles (PNGV) is the demonstration in CY 2000 of a 5-passenger vehicle with fuel economy of up 80 mpg (3 l/100km). As a PNGV partner, GM will demonstrate a technology-demonstration concept vehicle, the Precept, having a lightweight aluminum-intensive body, hybrid-electric propulsion system and a portfolio of efficient vehicle technologies. This paper describes: 1) the strategy for the vehicle design including mass requirements, 2) the selection of dual axle application of regenerative braking and electric traction, and 3) the complementary perspective on energy management strategy. This paper outlines information developed through systems analysis that drove technology selections. The systems analyses relied on vehicle simulation models to estimate fuel economy associated with technology selections. Modeling analyses included consideration of both federal test requirements and more severe driving situations.
Technical Paper

R-152a Refrigeration System for Mobile Air Conditioning

2003-03-03
2003-01-0731
In recent years, climate protection has become as important as ozone layer protection was in the late 1980's and early 1990s. Concerns about global warming and climate change have culminated in the Kyoto Protocol, a treaty requiring its signatories to limit their total emission of greenhouse gases to pre-1990 levels by 2008. The inclusion of hydrofluorocarbons (HFCs) as one of the controlled substances in the Kyoto Protocol has increased global scrutiny of the global warming impact of HFC-134a (called R-134a when used as a refrigerant), the current mobile air conditioning refrigerant. Industry's first response was to begin improving current R-134a systems to reduce leakage, reduce charge, and increase system energy efficiency, which in turn reduces tailpipe CO2 emissions. An additional option would be to replace the current R-134a with a refrigerant of lower global warming impact. This paper documents the use of another HFC, R-152a, in a mobile A/C system.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Technical Paper

PEM Fuel Cell System Solutions for Transportation

2000-03-06
2000-01-0373
PEM Fuel Cell technology has been advancing rapidly during the last several years as evidenced by various vehicle demonstrations by the major automotive companies. As the development continues to bring hardware to automotive system level solutions, many engineering challenges arise. This paper will deal with two (2) of these areas from an automotive system level perspective: Thermal Management and the Fuel Cell Stack. Both of these sub-system areas are critical to the success of the technology in meeting the requirements of tomorrow's automotive customer.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Observer Design for Fuel Reforming in HCCI Engines Using a UEGO Sensor

2009-04-20
2009-01-1132
Homogeneous Charge Compression Ignition (HCCI) combustion shows a high potential of reducing both fuel consumption and exhaust gas emissions. Many works have been devoted to extend the HCCI operation range in order to maximize its fuel economy benefit. Among them, fuel injection strategies that use fuel reforming to increase the cylinder charge temperature to facilitate HCCI combustion at low engine loads have been proposed. However, to estimate and control an optimal amount of fuel reforming in the cylinder of an HCCI engine proves to be challenging because the fuel reforming process depends on many engine variables. It is conceivable that the amount of fuel reforming can be estimated since it correlates with the combustion phasing which in turn can be measured using a cylinder pressure sensor.
Technical Paper

Numerical Investigation of Recompression and Fuel Reforming in a SIDI-HCCI Engine

2007-07-23
2007-01-1878
Homogeneous Charge Compression Ignition (HCCI) is a combustion concept which has the potential for efficiency comparable to a DI Diesel engine with low NOx and soot emissions. However, HCCI is difficult to control, especially at low speeds and loads. One way to assist with combustion control and to extend operation to low speed and loads is to close the exhaust valve before TDC of the exhaust stroke, trapping and recompressing some of the hot residual. Further advantages can be attained by injecting the fuel into this trapped, recompressed mixture, where chemical reactions occur that improve ignitability of the subsequent combustion cycle. Even further improvement in the subsequent combustion cycle can be achieved by applying a spark, leading to a spark-assisted HCCI combustion concept.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA

2006-10-16
2006-01-3314
The focus of this research effort was to develop a technique to measure the cyclic variability of the mass injected by fuel injectors. Successful implementation of the measurement technique introduced in this paper can be used to evaluate injectors and improve their designs. More consistent and precise fuel injectors have the potential to improve fuel efficiency, engine performance, and reduce emissions. The experiments for this study were conducted at the Michigan State University Automotive Research Experiment Station. The setup consists of a fuel supply vessel pressurized by compressed nitrogen, a Dantec laser Doppler anemometry (LDA) system to measure the centerline velocity of fuel, a quartz tube for optical access, and a Cosworth IC 5460 to control the injector. The detector on the LDA system is capable of resolving Doppler bursts as short as 6μs, depending on the level of seeding, thus giving a detailed time/velocity profile.
Technical Paper

Least-Enthalpy Based Control of Cabin Air Recirculation

2015-04-14
2015-01-0372
The vehicle air-conditioning system has significant impact on fuel economy and range of electric vehicles. Improving the fuel economy of vehicles therefore demand for energy efficient climate control systems. Also the emissions regulations motivate the reduced use of fuel for vehicle's cabin climate control. Solar heat gain of the passenger compartment by greenhouse effect is generally treated as the peak thermal load of the climate control system. Although the use of advanced glazing is considered first to reduce solar heat gain other means such as ventilation of parked car and recirculation of cabin air also have impetus for reducing the climate control loads.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

Hot Surface Ignition of Gasoline-Ethanol Fuel Mixtures

2009-04-20
2009-01-0016
The purpose of this paper is to present the results of hot surface ignition (HSI) testing and American Society for Testing and Materials (ASTM) auto-ignition testing (AIT) performed on gasoline fuel mixtures containing varying levels of ethanol. With the increased consumer interest in ethanol-based fuels as a measure of reducing the United States dependence on foreign oil, the use of E85 and other ethanol/petroleum fuel blends is on the increase. While some autoignition data for summer and winter blends of gasoline on hot surfaces exist beyond the standard ASTM E659-78 test procedure [1], there is little data on ethanol-based fuels and their HSI characteristics.
X