Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Toothed Chain CVT: Opportunities and Challenges

A toothed chain continuously variable transmission concept is studied. By designing positive engagement at top overdrive ratio, we explored the potential to improve CVT mechanical efficiency. The low cost solution could improve fuel economy by 0.7% in FTP composite cycle. Preliminary multi-body dynamic simulation is also completed using VL-Motion to concept-proof the technical feasibility of disengagement and engagement. To address the noise issue resulted from abandoning the random pitch design in production chain, we proposed an alternate chain pitch sequence but more experimental data is required to validate the design.
Technical Paper

Development of a Low Loss Clutch for CVT Reverse Function

Continuously variable transmissions (CVT) provide superior fuel economy by enabling internal combustion engines to operate at their “sweet spots”. However, there is still potential to improve CVT system’s mechanical efficiency, and further enhance vehicle-level fuel economy. In the past, extensive research work has focused on the core continuously variator unit (CVU) that includes pulleys and a belt or chain. Another thread of research has centered on optimization of CVT clamping force control to reduce hydraulic system loss. Nonetheless, to the best of our knowledge, very little research has looked into the planetary gear sets and clutches that enable the CVT system to switch between forward, neutral and reverse gears. The state-of-the-art reverse clutch usually consists of multiple friction and steel plates, and is normally open during all forward driving maneuvers. The relative speed between friction and steel plates is identical to turbine speed, which generate spin loss.