Refine Your Search

Topic

Search Results

Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Multi-Physics Based System Model for Early Stage Hybrid/Electric Vehicle HV Battery Design

2017-01-10
2017-26-0095
Vehicle electrification is driven globally due to the increased concerns on carbon emissions. But the challenges in customer acceptance remains esp. in relation to vehicle costs. Virtual simulations can help in cutting down product development cost and enable faster launch of new vehicles. An early stage system model based design iterations can help in cutting down the product development costs and building more robust products. In the current paper, we develop and analyze a battery pack system model for early phase design. We extend a previously developed system model to include critical physics like sub-component level multiphysics for electrical joint integrity. Also, we demonstrate an integration of 3D FEM & system model for improving the accuracy of joint temperature predictions during charging and/or discharging. A typical High Voltage (HV) battery system comprises of battery modules (Li-ion cells, cooling channels, structural frames, interconnect boards) and HV bus bars.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Modeling Response Time of Next Generation Electric Brake Boosters

2018-10-05
2018-01-1871
In the course of this paper, a model suitable for studying the performance - in terms of response time, current draw, and peak pressure capacity - of an electric booster-based brake system is introduced. Some discussion about the need the model is attempting to fulfill and how it fits into the vehicle development process is offered, before explaining the model in full. The equations describing the physics of the model are presented, and an explanation of how the elements of the model are integrated together into an easy to use, fast-running spreadsheet environment is given. Case study examples, validating the model against physical test (hardware in the loop) test results are shown, followed by sensitivity studies testing how changing parameters such as caliper Pressure-Volume curves, hydraulic system flow characteristics, voltage supply, and temperature conditions affect performance.
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Technical Paper

Li-ion Air-Cooled Battery System Interactions With the Vehicle HVAC System

2013-04-08
2013-01-0242
The performance of a High Voltage (HV) battery in an advanced propulsion application is often highly dependent on the customer controlled climate settings of the vehicle system. Cooling of the battery requires an understanding of the environment in which it is expected to operate. Results from testing on various air-cooled systems will be discussed to portray the interactions of the battery system design and the climate control system design. The following topics (in relation to battery cooling) will be discussed: climate control system temperature settings; climate-control system fan settings; climate control system recirculation mode and outside air mode settings; venting of the battery thermal system exhaust air; and the battery location and mounting.
Technical Paper

Initial Comparisons of Friction Stir Spot Welding and Self Piercing Riveting of Ultra-Thin Steel Sheet

2018-04-03
2018-01-1236
Due to the limitations on resistance spot welding of ultra-thin steel sheet (thicknesses below 0.5 mm) in high-volume automotive manufacturing, a comparison of friction stir spot welding and self-piercing riveting was performed to determine which process may be more amenable to enabling assembly of ultra-thin steel sheet. Statistical comparisons between mechanical properties of lap-shear tensile and T-peel were made in sheet thickness below 0.5 mm and for dissimilar thickness combinations. An evaluation of energy to fracture, fracture mechanisms, and joint consistency is presented.
Technical Paper

Identification of Organic Acids in Used Engine Oil Residues by Pyrolysis-Comprehensive 2D Gas Chromatography-Time of Flight Mass Spectrometry

2016-10-17
2016-01-2274
The amount of acidic material in used engine oil is considered an indicator of the remaining useful life of the oil. Total acid number, determined by titration, is the most widely accepted method for determining acidic content but the method is not capable of speciation of individual acids. In this work, high molecular weight residue was isolated from used engine oil by dialysis in heptane. This residue was then analyzed using pyrolysis-comprehensive two dimensional gas chromatography with time-of-flight mass spectrometry. Carboxylic acids from C2-C18 were identified in the samples with acetic acid found to be the most abundant. This identification provides new information that may be used to improve the current acid detection methodologies for used engine oils.
Technical Paper

IGBT Power Modules Evaluation for GM Electrified Vehicles

2018-04-03
2018-01-0460
GM has recently developed two types of plug-in electric vehicles. First is an extended range electric vehicle such as the Volt, and the second is a battery electric vehicle such as the Bolt. An overview, of traction inverter and power module used in GM battery electric vehicles, is presented. IGBT power modules are critical components used in traction inverters for driving GM Electrified Vehicles. IGBT power modules are also described in a benchmarking study using key metrics based on horizontal die configuration, layout and vertical thermal stack. Power Module evaluation test set up, procedure and instrumentation used in GM Power Module Lab, Pontiac, Michigan are described. GM Electrification development journey depends on IGBT power module passive test benches; turn on/off energy loss tester, thermal resistance tester, and slow/fast power cycles testers (fast junction temperature change, in seconds, and slow baseplate temperature change, in minutes).
Technical Paper

High Voltage Hybrid Battery Tray Design Optimization

2011-04-12
2011-01-0671
Hybrid high voltage battery pack is not only heavy mass but also large in dimension. It interacts with the vehicle through the battery tray. Thus the battery tray is a critical element of the battery pack that interfaces between the battery and the vehicle, including the performances of safety/crash, NVH (modal), and durability. The tray is the largest and strongest structure in the battery pack holding the battery sections and other components including the battery disconnect unit (BDU) and other units that are not negligible in mass. This paper describes the mass optimization work done on one of the hybrid batteries using CAE simulation. This was a multidisciplinary optimization project, in which modal performance and fatigue damage were accessed through CAE analysis at both the battery pack level, and at the vehicle level.
Technical Paper

High Power Cell for Mild and Strong Hybrid Applications Including Chevrolet Malibu

2017-03-28
2017-01-1200
Electric vehicles have a strong potential to reduce a continued dependence on fossil fuels and help the environment by reducing pollution. Despite the desirable advantage, the introduction of electrified vehicles into the market place continues to be a challenge due to cost, safety, and life of the batteries. General Motors continues to bring vehicles to market with varying level of hybrid functionality. Since the introduction of Li-ion batteries by Sony Corporation in 1991 for the consumer market, significant progress has been made over the past 25 years. Due to market pull for consumer electronic products, power and energy densities have significantly increased, while costs have dropped. As a result, Li-ion batteries have become the technology of choice for automotive applications considering space and mass is very critical for the vehicles.
Journal Article

General Motors’ New Reduced Scale Wind Tunnel Center

2017-03-28
2017-01-1534
The General Motors Reduced Scale Wind Tunnel Facility, which came into operation in the fall of 2015, is a new state-of-the-art scale model aerodynamic test facility that expands GM’s test capabilities. The new facility also increases GM’s aerodynamic testing through-put and provides the resources needed to achieve the growing demand for higher fuel economy requirements for next generation of vehicles. The wind tunnel was designed for a nominal model scale of 40%. The nozzle and test section were sized to keep wind tunnel interference effects to a minimum. Flow quality and other wind tunnel performance parameters are on par with or better than the latest industry standards. A 5-belt system with a long center belt and boundary layer suction and blowing system are used to model underbody flow conditions. An overhead probe traverse system is installed in the test section along with a model positioning robot used to move the model in an out of the test section.
Technical Paper

Development of General Motors’ eAssist Gen3 Propulsion System

2018-04-03
2018-01-0422
General Motors’ 3rd generation eAssist propulsion systems build upon the experience gained from the 2nd generation 115v system and the 1st generation 36v system. Extensive architectural studies were conducted to optimize the new eAssist system to maintain the performance and fuel economy gains of the 2nd generation 115v system while preserving passenger and cargo space, and reducing cost. Three diverse vehicle applications have been brought to production. They include two similar pickup trucks with 5.3 liter V8 engines and 8 speed transmissions, a 4-door passenger car with 2.5 liter 4 cylinder normally aspirated gasoline engine and a 6-speed automatic transmission, and a crossover SUV with a 2.0-liter turbocharged engine and 9 speed transmission. The key electrification components are a new water cooled induction motor/generator (MG), new water cooled power electronics module, and two major variants of 86v lithium ion battery packs.
Technical Paper

Determining the Greenhouse Gas Emissions Benefit of an Adaptive Cruise Control System Using Real-World Driving Data

2019-04-02
2019-01-0310
Adaptive cruise control is an advanced vehicle technology that is unique in its ability to govern vehicle behavior for extended periods of distance and time. As opposed to standard cruise control, adaptive cruise control can remain active through moderate to heavy traffic congestion, and can more effectively reduce greenhouse gas emissions. Its ability to reduce greenhouse gas emissions is derived primarily from two physical phenomena: platooning and controlled acceleration. Platooning refers to reductions in aerodynamic drag resulting from opportunistic following distances from the vehicle ahead, and controlled acceleration refers to the ability of adaptive cruise control to accelerate the vehicle in an energy efficient manner. This research calculates the measured greenhouse gas emissions benefit of adaptive cruise control on a fleet of 51 vehicles over 62 days and 199,300 miles.
Technical Paper

Crash-induced Loads in Liftgate Latching Systems

2018-04-03
2018-01-1333
Automotive liftgate latches have been subject to regulation for minimum strength and inertial resistance requirements since the late 1990’s in the US and globally since the early 2000’s, possibly due to liftgate ejections stemming from the first generation Chrysler minivans which employed latches that were not originally designed with this hazard in mind. Side door latches have been regulated since the 1960’s, and the regulation of liftgate, or back door latches, have been based largely on side door requirements, with the exception of the orthogonal test requirement that is liftgate specific. Based on benchmarking tests of liftgate latches, most global OEM’s design their latches to exceed the minimum regulatory requirements. Presumably, this is based on the need to keep doors closed during crashes and specifically to do so when subjected to industry standard tests.
Technical Paper

Combined Drag and Cooling Optimization of a Car Vehicle with an Adjoint-Based Approach

2018-04-03
2018-01-0721
The main objective of this work is to present an adjoint-based methodology to address combined optimization of drag force and cooling flow rate of an industrial vehicle. In order to cope with cooling effect, the volumetric flow rate is treated through a newly introduced cost function and the corresponding adjoint source term is derived. Also an alternative strategy is presented to tackle aerodynamic vehicle design improvement that relies on a so-called indirect force computation. The overall optimization is treated as a Multi-Objective problem and an original approach, called Optimize Both Favor One (OBFO), is introduced that allows selective emphasis on one or another objective without resorting to artificial cost function balancing. Finally, comparative results are presented to demonstrate the merit of the proposed methodology.
Technical Paper

Cascaded Dual Extended Kalman Filter for Combined Vehicle State Estimation and Parameter Identification

2013-04-08
2013-01-0691
This paper proposes a model-based “Cascaded Dual Extended Kalman Filter” (CDEKF) for combined vehicle state estimation, namely, tire vertical forces and parameter identification. A sensitivity analysis is first carried out to recognize the vehicle inertial parameters that have significant effects on tire normal forces. Next, the combined estimation process is separated in two components. The first component is designed to identify the vehicle mass and estimate the longitudinal forces while the second component identifies the location of center of gravity and estimates the tire normal forces. A Dual extended Kalman filter is designed for each component for combined state estimation and parameter identification. Simulation results verify that the proposed method can precisely estimate the tire normal forces and accurately identify the inertial parameters.
Technical Paper

Braking with a Trailer and Mountain Pass Descent

2019-09-15
2019-01-2116
A truly strange - but very interesting - juxtaposition of thought occurs when considering customer’s deceleration needs for towing heavy trailers in mountainous regions, and the seemingly very different area of sizing brakes for Battery Electric Vehicles (BEV) and other regenerative braking-intensive vehicle applications, versus brakes for heavy-duty trucks and other vehicles rated to tow heavy trailers. The common threads between these two very different categories of vehicles include (a) heavy dependence on the powertrain and other non-brake sources of energy loss to control the speed of the vehicle on the grade and ensure adequate capacity of the brake system, (b) a need to consider descent conditions where towing a heavy trailer is feasible (in the case of heavy trailer towing) or initiating a descent with a full state of charge is realistic (in the case of BEVs), which forces consideration of different descents versus the typical (for brake engineers) mountain peak descent.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Technical Paper

Brake System Design for Dedicated BEV Architectures

2018-10-05
2018-01-1870
As fossil fuels dwindle and more electric vehicles enter the market, there is an opportunity to reevaluate the standard brake system. This paper will discuss and compare the differences in brake system sizing between a non-regenerative braking internal combustion engine vehicle and a dedicated battery electric vehicle with regenerative braking. It will use a model derived from component dynamometer testing and vehicle test data of a mid-size production vehicle. The model will be modified for the mass and regenerative braking capabilities of a battery electric vehicle. The contribution of regenerative braking energy will be analyzed and compared to show its impact on component sizing, thermal sizing, and lining life. The detailed design study will calculate the parameters for caliper, rotor design, actuation, etc., that are optimized for 100% regen enabled vehicles.
X