Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D

2016-11-07
2016-22-0016
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
Technical Paper

The Influence of Wheel Assembly Non Uniformity on Disc Brake Lateral Runout

2011-09-18
2011-01-2378
The importance of achieving good (low) assembled lateral runout of the brake disc is well recognized in the industry - it is a critical feature for avoiding issues such as wear-induced disc thickness variation and vibration/shudder during braking. Significant efforts and expense has been invested by the industry into reducing disc brake lateral runout. However, wheel assemblies also have some inherent runout, which in turn cause cyclical forces to act on the brake corner during vehicle movement. Despite the stiffness of the wheel bearing (which aligns the brake disc with the caliper and knuckle), these “tire non-uniformity” forces can be sufficient to promote deflection of the assembly that is appreciable compared to typical disc lateral runout tolerances. This paper covers measurements of this phenomenon on three different vehicles (compact, mid-size, and large cars), under a variety of operating conditions such as speed, wheel assembly runout, and wheel assembly balance.
Technical Paper

Testing Methods and Recommended Validation Strategies for Active Safety to Optimize Time and Cost Efficiency

2020-04-14
2020-01-1348
Given the current proliferation of active safety features on new vehicles, especially for Advanced Driver Assistance Systems (ADAS) and Highly Automated Driving (HAD) technologies, it is evident that there is a need for testing methods beyond a vehicle level physical test. This paper will discuss the current state of the art in the industry for simulation-based verification and validation (V&V) testing methods. These will include, but are not limited to, "Hardware-in-the-Loop (HIL)", “Software-in-the-Loop (SIL)”, “Model-in-the-Loop (MIL)”, “Driver-in-the-Loop (DIL)”, and any other suitable combinations of the aforementioned (XIL). Aspects of the test processes and needed components for simulation will be addressed, detailing the scope of work needed for various types of testing. The paper will provide an overview of standardized test aspects, active safety software validation methods, recommended practices and standards.
Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Technical Paper

Strain Amount and Strain Path Effects on Instrumented Charpy Toughness of Baked Third Generation Advanced High Strength Steels

2021-04-06
2021-01-0266
Third generation advanced high strength steels (AHSS) that rely on the transformation of austenite to martensite have gained growing interest for implementation into vehicle architectures. Previous studies have identified a dependency of the rate of austenite decomposition on the amount of strain and the associated strain path imposed on the sheet. The rate and amount of austenite transformation can impact the work hardening behavior and tensile properties. However, a deeper understanding of the impact on toughness, and thus crash performance, is not fully developed. In this study, the strain path and strain amounts were systematically controlled to understand the associated correlation to impact toughness in the end application condition (strained and baked). Impact toughness was evaluated using an instrumented Charpy machine with a single sheet v-notch sample configuration.
Technical Paper

Springback Prediction and Correlations for Third Generation High Strength Steel

2020-04-14
2020-01-0752
Third generation advanced high strength steels (3GAHSS) are increasingly used in automotive for light weighting and safety body structure components. However, high material strength usually introduces higher springback that affects the dimensional accuracy. The ability to accurately predict springback in simulations is very important to reduce time and cost in stamping tool and process design. In this work, tension and compression tests were performed and the results were implemented to generate Isotropic/Kinematic hardening (I/KH) material models on a 3GAHSS steel with 980 MPa minimum tensile strength. Systematic material model parametric studies and evaluations have been conducted. Case studies from full-scale industrial parts are provided and the predicted springback results are compared to the measured springback data. Key variables affecting the springback prediction accuracy are identified.
Journal Article

Sizing Next Generation High Performance Brake Systems with Copper Free Linings

2017-09-17
2017-01-2532
The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
Technical Paper

Simple Robust Formulations for Engineers: An Alternate to Taguchi S/N

2020-04-14
2020-01-0604
Robust engineering is an integral part of the quality initiative, Design For Six Sigma (DFSS), in most companies to enable good designs and products for reliability and durability. Taguchi’s signal-to-noise ratio has been considered as a good performance index for robustness for many years. An alternate approach that is direct and simple for measuring robustness is proposed. In this approach, robustness is measured in terms of an augmented output response and it is a composite index of variation and efficiency of a system. This formulation represents an engineering design intent of a product in a statistical sense, so engineers can understand, communicate, and resonate at ease. Robust formulations are illustrated and discussed with case studies for smaller-the-better, nominal-the-best, and dynamic responses. Confirmation runs of optimization show good agreement of the augmented response with the additive predictive models.
Technical Paper

Self-Certification Requirements for Adaptive Driving Beam Headlamps

2017-03-28
2017-01-1365
Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
Technical Paper

SAE Low-Frequency Brake Noise Test Procedure

2010-10-10
2010-01-1696
This paper presents the work of the SAE Brake NVH Standards Committee in developing a draft Low-Frequency Brake Noise Test Procedure. The goal of the procedure is to be able to accurately measure noise issues in the frequency range below 900 Hz using a conventional shaft brake noise dynamometer. The tests conducted while evaluating alternative test protocols will be discussed and examined in detail. The unique issues encountered in developing a suitable test procedure for low-frequency noise will be discussed, and the results of tests using both shaft brake dynamometers and chassis dynamometers will be described. The current draft procedure incorporating the knowledge gained from this development effort will be described in detail and conclusions as to its applicability will also be presented
Journal Article

Rotor Optimization to Reduce Electric Motor Noise

2023-04-11
2023-01-0540
Electric motor is among the main sources of noise and vibration for electrified propulsion systems. This paper focuses on the electric motor rotor NVH optimization, which is identified as a key enabler to reduce the motor whine, and balances other performance such as motor torque and efficiency. First, conventional rotor NVH design technologies such as rotor skew and asymmetric rotor pole-to-pole design are discussed, along with their associated tradeoff including reduced motor torque and additional sideband orders. Next, a special notch feature is proposed on the rotor surface with one notch per pole at every q-axis. A DOE study leads to the optimal notch design which significantly reduces the dominant motor torque ripple order by up to 20 dB, with minimum impact to motor torque or loss. Further design studies are then performed to explore additional d-axis notches which are symmetrically located within the top layer magnet opening angles.
Journal Article

Re-imagining Brake Disc Thermal Fatigue Testing to Relate to Field Use

2022-09-19
2022-01-1163
The validation of brake discs has remained, to this day, heavily reliant on “Thermal Abuse” or “Thermal Cracking” type testing, with many procedures so dated that most engineers active in the industry today cannot even recall the origin of the test. These procedures - of which there are many variants - all share the trait of greatly accelerating durability testing by performing repeated high power (high speed and high deceleration) brake applies to drive huge temperature gradients and internal stress, and often allowing the disc to get very hot, to where the strength of the material from which the disc is constructed is significantly degraded. There is little debate about whether these procedures work; by and large disc durability issues in the field are extremely rare.
Technical Paper

Purge Pump Rotor Dynamics Subjected to Ball Bearing Inner and Outer Race Wear Defects

2020-04-14
2020-01-0403
The purge pump is used to pull evaporative gases from canister and send to engine for combustion in Turbocharged engines. The purge pump with impeller at one end and electric motor at the other end is supported by the ball bearing assembly. A bearing kinematic model to predict forcing function due to defect in ball bearing arrangement, coupled with bearing dynamic model of rotor because of rotating component, is proposed in this paper to get accumulated effect on transmitted force to the purge pump housing. Rotor dynamic of purge pump rotor components only produces certain order forcing responses which can be simulated into the multibody software environment, knowing the ball bearing geometry parameters hence providing stiffness parameter for rotor system.
Journal Article

Predictive Break-In and Rapid Efficiency Characterization of Beam Axles

2020-04-14
2020-01-1413
Given continued industry focus on reducing parasitic losses, the ability to accurately measure the magnitude of losses on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of SAE draft standard J3218, which is a comprehensive test procedure to break-in and characterize the efficiency of beam axles. Focus areas of the study included ensuring the axle’s efficiency does not change as it is being characterized, building a detailed map of efficiency at a wide range of operating points, and minimizing test time. The resulting break-in procedure uses an asymptotic regression approach to predict fully broken in efficiency of the axle and determine how much the efficiency of the axle changes during the characterization phase.
Technical Paper

Potential towards CI Engines with Lower NOx Emissions through Calibration Optimization and Low-Carbon Fuels

2022-03-29
2022-01-0511
The continuous improvement of internal combustion engines (ICEs) with strategies that can be applied to existing vehicle platforms, either directly or with minor modifications, can improve efficiency and reduce GHG emissions to help achieve Paris climate targets. Low carbon fuels (LCF) as diesel substitutes for light and heavy-duty vehicles are currently being considered as a promising alternative to reduce well-to-wheel (WTW) CO2 emissions by taking advantage of the carbon offset their synthesis pathway can promote, which could capture more CO2 than it releases into the atmosphere. Additionally, some low carbon fuels, like OMEx blends, have non-sooting properties that can significantly improve the NOx-soot tradeoff. The current work studies the calibration optimization of a EU6D-TEMP light-duty engine using various LCFs with different renewable contents with the goal of reduced NOx emissions.
Technical Paper

Perspectives on the Transition from Hardware-Based Validation and Product Evaluation to Virtual Processes

2023-04-11
2023-01-0164
Accelerating product development cycles and incentives to reduce costs in product development are strong motivators to move to virtual development and validation processes. Challenges to moving to a virtual paradigm include a wealth of historical data and context for hardware tests, uncertainty over dependencies, and a lack of a clear path of transition to virtual methods. In this paper we will discuss approaches to understanding the value created by hardware tests and aligning that value to virtual processes. We will also discuss the need for a virtual context to be added to SAE J1739 [1] (DFMEA detection criteria), and how to create paths to maximize the value of virtual assessments. Finally, we will also discuss the cultural and organizational changes required to support.
X