Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Virtual Powertrain Calibration at GM Becomes a Reality

2010-10-19
2010-01-2323
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

High Power Cell for Mild and Strong Hybrid Applications Including Chevrolet Malibu

2017-03-28
2017-01-1200
Electric vehicles have a strong potential to reduce a continued dependence on fossil fuels and help the environment by reducing pollution. Despite the desirable advantage, the introduction of electrified vehicles into the market place continues to be a challenge due to cost, safety, and life of the batteries. General Motors continues to bring vehicles to market with varying level of hybrid functionality. Since the introduction of Li-ion batteries by Sony Corporation in 1991 for the consumer market, significant progress has been made over the past 25 years. Due to market pull for consumer electronic products, power and energy densities have significantly increased, while costs have dropped. As a result, Li-ion batteries have become the technology of choice for automotive applications considering space and mass is very critical for the vehicles.
Technical Paper

Global Market Gasoline Quality Review: Five Year Trends in Particulate Emission Indices

2021-04-06
2021-01-0623
A gasoline’s chemical composition impacts a vehicle’s sooting tendency and therefore has been the subject of numerous emissions studies. From these studies, several mathematical correlation equations have been developed to predict a gasoline’s sooting tendency in modern spark-ignited internal combustion engine vehicles. This paper reviews the recently developed predictive tool methods and summarizes five years of global market fuel survey data to characterize gasoline sooting tendency trends around the world. Additionally, the paper will evaluate and suggest changes to the predictive methods to improve emissions correlations.
Journal Article

Evaluation of High Resistance Connection in Automotive Application

2020-04-14
2020-01-0926
Electrical connections have a normal operational temperature range. A high resistance, such as a poor connection, in an electrical circuit has been reported to cause a temperature increase exceeding normal operational range at the connection. This study measures the temperature increase in a typical automotive bolted battery cable connection with low to zero torque values and simulated high resistance under different load conditions. The torque is changed from maximum design value to 0 Nm and the temperature increase at the connection is measured. The high resistance connections, manually created by adjusting the contacts, are tested for several power loss values at the connection. The temperature rise under these conditions at the connection is measured and subsequently recorded. The maximum temperature increase at the bolted cable connection recorded at low torque values including 0 Nm torque compared to the maximum typical design value of 17 Nm is 10.5 °C.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

China Market Gasoline Review Using Fuel Particulate Emission Correlation Indices

2017-10-08
2017-01-2401
The impact of gasoline composition on vehicle particulate emissions response has been widely investigated and documented. Correlation equations between fuel composition and particulate emissions have also been documented, e.g. Particulate Matter Index (PMI) and Particulate Evaluation Index (PEI). Vehicle PM/PN emissions correlate very well with these indices. In a previous paper, global assessment with PEI on fuel sooting tendency was presented [1]. This paper will continue the previous theme by the authors, and cover China gasoline in more detail. With air pollution an increasing concern, along with more stringent emission requirements in China, both OEMs and oil industries are facing new challenges. Emissions controls require a systematic approach on both fuels and vehicles. Chinese production vehicle particulate emissions for a range of PEI fuels are also presented.
Technical Paper

Analytical Failure Modeling of Thermal Interface Material in High Voltage Battery Modules in Electric Vehicle Crash Scenario

2023-04-11
2023-01-0521
Battery Electric Vehicles (BEVs) are becoming more competitive day by day to achieve maximum peak power and energy requirement. This poses challenges to the design of Thermal Interface Material (TIM) which maintains the cell temperature and ensure retention of cell and prevent electrolyte leak under different crash loads. TIM can be in the form of adhesives, gels, gap fillers. In this paper, TIM is considered as structural, and requires design balance with respect to thermal and mechanical requirements. Improving structural strength of TIM will have negative impact on its thermal conductivity; hence due care needs to be taken to determine optimal strength that meets both structural and thermal performance. During various crash conditions, due to large inertial force of cell and module assembly, TIM is undertaking significant loads on tensile and shear directions. LS-DYNA® is used as simulation solver for performing crash loading conditions and evaluate structural integrity of TIM.
Technical Paper

Analytical Evaluation of Engine and Vehicle Hardware Effects on Vehicle Response

2019-04-02
2019-01-1283
As the proliferation of downsized boosted engines continues, it becomes increasingly important to understand how engine and vehicle hardware impact vehicle transient response. Several different methodologies can be used to understand hardware impacts, such as vehicle testing, 0-D vehicle models, and constant engine speed load steps. The next evolution of predicting vehicle transient response is to transition to a system level vehicle analysis by coupling a detailed engine model, utilizing crank angle resolved calculations, with a simple vehicle model. This allows for the evaluation of engine and vehicle hardware effects on vehicle acceleration and the rate of change of vehicle acceleration, or jerk, and the tradeoffs that can be made between the hardware in early program development. By comparing this system level vehicle model to the different methodologies, it can be shown that a system level vehicle analysis allows for higher fidelity evaluations of vehicle transient response.
Technical Paper

A New Predictive Vehicle Particulate Emissions Index Based on Gasoline Simulated Distillation

2022-03-29
2022-01-0489
Fuel chemistry plays a crucial role in the continued reduction of particulate emissions (PE) and cleaner air quality from vehicles and equipment powered by internal combustion engines (ICE). Over the past ten years, there have been great improvements in predictive particulate emissions indices (correlative mathematical models) based on the fuel’s composition. Examples of these particulate indices (PI) are the Honda Particulate Matter Index (PMI) and the General Motors Particulate Evaluation Index (PEI). However, the analytical chemistry lab methods used to generate data for these two PI indices are very time-consuming. Because gasoline can be mixtures of hundreds of hydrocarbon compounds, these lab methods typically include the use of the high resolution chromatographic separation techniques such as detailed hydrocarbon analysis (DHA), with 100m chromatography columns and long (3 - 4 hours) analysis times per sample.
X