Refine Your Search

Topic

Author

Search Results

Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Varying the Polyurethane Foam Ratio for Better Acoustic Performance and Mass Savings

2011-05-17
2011-01-1736
Flexible molded polyurethane foams are widely used in automotive industry. As porous-elastic materials, they can be used as decoupler layers in conventional sound insulation constructions or as sound absorbers in vehicle trim parts. Flexible molded polyurethane foams are produced by reacting of liquid Isocyanate (Iso) with a liquid Polyol blend, catalysts, and other additives. Their acoustic performance can be changed by varying the mixing ratio, the weight proportion of two components: Iso and Polyol. Consequently, the sound insertion loss (IL) of barrier/foam constructions and acoustic absorption of a single foam layer will vary. In this paper, based on one industry standard flexible molded polyurethane foam process, the relationship between foam mixing ratio and foam acoustic performance is studied in terms of IL and sound absorption test results.
Technical Paper

Validation of Expanded Polypropylene (EPP) Foam Material Models for Low Speed Bumper and Pedestrian Protection Applications

2017-03-28
2017-01-0363
Expanded Polypropylene (EPP) foams are most commonly used in automotive applications for pedestrian protection and to meet low speed bumper regulatory requirements. In today’s automotive world the design of vehicles is predominantly driven by Computer Aided Engineering (CAE). This makes it necessary to have a validated material model for EPP foams in order to simulate and predict performance under various loading conditions. Since most of the automotive OEMs depend on local material suppliers for their global vehicle applications it is necessary to understand the variation in mechanical properties of the EPP foams and its effect on performance predictions. In this paper, EPP foams from three suppliers across global regions are characterized to study the inter-supplier variation in mechanical properties.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

The Influence of Wheel Assembly Non Uniformity on Disc Brake Lateral Runout

2011-09-18
2011-01-2378
The importance of achieving good (low) assembled lateral runout of the brake disc is well recognized in the industry - it is a critical feature for avoiding issues such as wear-induced disc thickness variation and vibration/shudder during braking. Significant efforts and expense has been invested by the industry into reducing disc brake lateral runout. However, wheel assemblies also have some inherent runout, which in turn cause cyclical forces to act on the brake corner during vehicle movement. Despite the stiffness of the wheel bearing (which aligns the brake disc with the caliper and knuckle), these “tire non-uniformity” forces can be sufficient to promote deflection of the assembly that is appreciable compared to typical disc lateral runout tolerances. This paper covers measurements of this phenomenon on three different vehicles (compact, mid-size, and large cars), under a variety of operating conditions such as speed, wheel assembly runout, and wheel assembly balance.
Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Technical Paper

Tensile Material Properties of Fabrics for Vehicle Interiors from Digital Image Correlation

2013-04-08
2013-01-1422
Fabric materials have diverse applications in the automotive industry which include upholstery, carpeting, safety devices, and interior trim components. The textile industry has invested substantial effort toward development of standard testing techniques for characterizing mechanical properties of different fabric types (e.g. woven and knitted). However, there are presently no standards for determination of Young's modulus, Poisson's ratio and tensile stress-strain properties required for the detailed modeling of fabric materials in vehicle structural simulations. This paper presents results from uniaxial tensile tests of different automotive seat cover fabric materials. Digital image correlation, a full field optical method for measuring surface deformation, was used to determine tensile properties in both the warp/wale and the weft/course directions. The fabrics were tested with and without the foam backing.
Technical Paper

Strain Amount and Strain Path Effects on Instrumented Charpy Toughness of Baked Third Generation Advanced High Strength Steels

2021-04-06
2021-01-0266
Third generation advanced high strength steels (AHSS) that rely on the transformation of austenite to martensite have gained growing interest for implementation into vehicle architectures. Previous studies have identified a dependency of the rate of austenite decomposition on the amount of strain and the associated strain path imposed on the sheet. The rate and amount of austenite transformation can impact the work hardening behavior and tensile properties. However, a deeper understanding of the impact on toughness, and thus crash performance, is not fully developed. In this study, the strain path and strain amounts were systematically controlled to understand the associated correlation to impact toughness in the end application condition (strained and baked). Impact toughness was evaluated using an instrumented Charpy machine with a single sheet v-notch sample configuration.
Journal Article

Stable and Accurate LS-DYNA Simulations with Foam Material Models: Optimization of Finite Element Model Parameters

2017-03-28
2017-01-1338
Cellular foams have found a predominant application in automotive industry for efficient energy absorption so as to meet stringent and continuously improving vehicle crashworthiness and occupant protection criteria. The recent inclusion of pedestrian protection regulations mandate the use of foams of different densities for impact energy absorption at identified impact locations; this has paved the way for significant advancements in foam molding techniques such as dual density and tri-density molding. With increased emphasis on light-weighting, solutions involving the use of polymeric or metallic foams as fillers in hollow structures - foam encapsulated metal structures - are being explored. Another major automotive application of foams is in the seat comfort area, which again involves foams of intricate shapes and sizes. In addition, a few recently developed foams are anisotropic, adding on to the existing complexities.
Journal Article

Sizing Next Generation High Performance Brake Systems with Copper Free Linings

2017-09-17
2017-01-2532
The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
Technical Paper

Simple Robust Formulations for Engineers: An Alternate to Taguchi S/N

2020-04-14
2020-01-0604
Robust engineering is an integral part of the quality initiative, Design For Six Sigma (DFSS), in most companies to enable good designs and products for reliability and durability. Taguchi’s signal-to-noise ratio has been considered as a good performance index for robustness for many years. An alternate approach that is direct and simple for measuring robustness is proposed. In this approach, robustness is measured in terms of an augmented output response and it is a composite index of variation and efficiency of a system. This formulation represents an engineering design intent of a product in a statistical sense, so engineers can understand, communicate, and resonate at ease. Robust formulations are illustrated and discussed with case studies for smaller-the-better, nominal-the-best, and dynamic responses. Confirmation runs of optimization show good agreement of the augmented response with the additive predictive models.
Journal Article

Re-imagining Brake Disc Thermal Fatigue Testing to Relate to Field Use

2022-09-19
2022-01-1163
The validation of brake discs has remained, to this day, heavily reliant on “Thermal Abuse” or “Thermal Cracking” type testing, with many procedures so dated that most engineers active in the industry today cannot even recall the origin of the test. These procedures - of which there are many variants - all share the trait of greatly accelerating durability testing by performing repeated high power (high speed and high deceleration) brake applies to drive huge temperature gradients and internal stress, and often allowing the disc to get very hot, to where the strength of the material from which the disc is constructed is significantly degraded. There is little debate about whether these procedures work; by and large disc durability issues in the field are extremely rare.
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Modeling Articulated Brake Component Wear to Assist with Routing Decisions

2018-10-05
2018-01-1890
Very few activities the brake engineer engages in can induce as much vexation as trying to find a satisfying routing for the flexible brake components such as hoses, wheel speed sensors, and electric parking brake cables. Ever increasing wheel end content, ever decreasing space, more complex suspensions, and bulkier (but lighter weight) suspension components provide quite the morass through which the components must be routed through. When routing is finalized - and free of any major issues - there frequently remains some combinations of articulation position and component tolerances that allow a light “friendly” touch between components (such as a sensor wire and a surface of a bracket or strut tube), or near misses where clearance exists but raises “what if” questions around what would happen if the tolerances would stack up slightly differently on another vehicle.
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Journal Article

Lining Wear Measurements using a Coordinate Measurement Machine

2021-10-11
2021-01-1270
Accurate measurements of brake friction materials are critical to understanding brake behaviors during testing. Current methods typically utilize a hand gauge (or a machine, in some cases) to sample various discrete points on the brake lining. This approach limits measurements to planar wear characteristics, taper and thickness, and excludes more complex measurements such as cupping. The limited number of points means that a single errant point measurement or the choice of point locations can have a large impact on the reported wear measurement. This paper will describe a method for utilizing a Coordinate Measurement Machine (CMM) fitted with a laser line scanning tool to generate a point cloud of data that can then be compared to an earlier measurement of the same piece or to a math model. This method produces thousands of data points which allows for more accurate volumetric wear calculations and color maps of the entire friction face.
Journal Article

Large Scale Multi-Disciplinary Optimization and Long-Term Drive Cycle Simulation

2020-04-14
2020-01-1049
Market demands for increased fuel economy and reduced emissions are placing higher aerodynamic and thermal analysis demands on vehicle designers and engineers. These analyses are usually carried out by different engineering groups in different parts of the design cycle. Design changes required to improve vehicle aerodynamics often come at the price of part thermal performance and vice versa. These design changes are frequently a fix for performance issues at a single performance point such as peak power, peak torque, or highway cruise. In this paper, the motivation for a holistic approach in the form of multi-disciplinary optimization (MDO) early in the design process is presented. Using a Response-surface Informed Transient Thermal Model (RITThM) a vehicle's thermal performance through a drive cycle is predicted and correlated to physical testing for validation.
Technical Paper

Kriging-Assisted Structural Design for Crashworthiness Applications Using the Extended Hybrid Cellular Automaton (xHCA) Framework

2020-04-14
2020-01-0627
The Hybrid Cellular Automaton (HCA) algorithm is a generative design approach used to synthesize conceptual designs of crashworthy vehicle structures with a target mass. Given the target mass, the HCA algorithm generates a structure with a specific acceleration-displacement profile. The extended HCA (xHCA) algorithm is a generalization of the HCA algorithm that allows to tailor the crash response of the vehicle structure. Given a target mass, the xHCA algorithm has the ability to generate structures with different acceleration-displacement profiles and target a desired crash response. In order to accomplish this task, the xHCA algorithm includes two main components: a set of meta-parameters (in addition target mass) and surrogate model technique that finds the optimal meta-parameter values. This work demonstrates the capabilities of the xHCA algorithm tailoring acceleration and intrusion through the use of one meta-parameter (design time) and the use of Kriging-assisted optimization.
Journal Article

Iterative Learning Algorithm Design for Variable Admittance Control Tuning of A Robotic Lift Assistant System

2017-03-28
2017-01-0288
The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
X