Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.