Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Technical Paper

Towards Electric Aircraft: Progress under the NASA URETI for Aeropropulsion and Power Technology

2006-11-07
2006-01-3097
The environmental impact of aircraft, specifically in the areas of noise and NOx emissions, has been a growing community concern. Coupled with the increasing cost and diminishing supply of traditional fossil fuels, these concerns have fueled substantial interest in the research and development of alternative power sources for aircraft. In 2003, NASA and the Department of Defense awarded a five year research cooperative agreement to a team of researchers from three different universities to address the design and analysis of revolutionary aeropropulsion technologies.
Journal Article

Security Analysis of Android Automotive

2020-04-14
2020-01-1295
In-vehicle infotainment (IVI) platforms are getting increasingly connected. Besides OEM apps and services, the next generation of IVI platforms are expected to offer integration of third-party apps. Under this anticipated business model, vehicular sensor and event data can be collected and shared with selected third-party apps. To accommodate this trend, Google has been pushing towards standardization among proprietary IVI operating systems with their Android Automotive platform which runs natively on the vehicle’s IVI platform. Unlike Android Auto’s limited functionality of display-projecting certain smartphone apps to the IVI screen, Android Automotive will have access to the in-vehicle network (IVN), and will be able to read and share various vehicular sensor data with third-party apps. This increased connectivity opens new business opportunities for both the car manufacturer as well as third-party businesses, but also introduces a new attack surface on the vehicle.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
Technical Paper

Nonlinear Adaptive Control of Tiltrotor Aircraft Using Neural Networks

1997-10-13
975613
Neural network augmented model inversion control is used to provide a civilian tilt-rotor aircraft with consistent response characteristics throughout its operating envelope, including conversion flight. The implemented response types are Attitude Command Attitude Hold in the longitudinal channel, and Rate Command Attitude Hold about the roll and yaw axes. This article describes the augmentation in the roll channel and the augmentation for the yaw motion including Heading Hold at low airspeeds and automatic Turn Coordination at cruise flight. Conventional methods require extensive gain scheduling with tilt-rotor nacelle angle and airspeed. A control architecture is developed that can alleviate this requirement and thus has the potential to reduce development time. It also facilitates the implementation of desired handling qualities, and permits compensation for partial failures.
Technical Paper

New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology

1998-09-28
985509
This paper critically evaluates the use of Neural Networks (NNs) as metamodels for design applications. The specifics of implementing a NN approach are researched and discussed, including the type and architecture appropriate for design-related tasks, the processes of collecting training and validation data, and training the network, resulting in a sound process, which is described. This approach is then contrasted to the Response Surface Methodology (RSM). As illustrative problems, two equations to be approximated and a real-world problem from a Stability and Controls scenario, where it is desirable to predict the static longitudinal stability for a High Speed Civil Transport (HSCT) at takeoff, are presented. This research examines Response Surface Equations (RSEs) as Taylor series approximations, and explains their high performance as a proven approach to approximate functions that are known to be quadratic or near quadratic in nature.
Technical Paper

Low Speed Canard-Tip-Vortex Airfoil Interaction

1997-05-01
971469
This paper describes a series of ongoing experiments to capture the details of perpendicular vortex-airfoil interaction. Three test cases explored are: 1) a 21% thick symmetric airfoil at 1.1° angle of attack, 2)a thin flat plate of 2.5% thickness with rounded leading edge, sharp trailing edge and zero angle of attack and 3) A 12% thick symmetric airfoil at zero angle of attack. The tip vortex was generated by a NACA0016 wing at 5° AOA. The strength of the vortex was computed from the velocity profile measured upstream for the first two cases. Pressure measurements on the 21% airfoil were used to quantify the effect of the vortex as a function of its stand-off distance from the airfoil. Vortex trajectories over the airfoils were obtained from laser sheet videography. The vortex motion conforms to potential flow expectations except in regions of pressure gradient and during head-on interaction.
Technical Paper

Laser Ignition of Multi-Injection Gasoline Sprays

2011-04-12
2011-01-0659
Laser plasma ignition has been pursued by engine researchers as an alternative to electric spark-ignition systems, potentially offering benefits by avoiding quenching surfaces and extending breakdown limits at higher boost pressure and lower equivalence ratio. For this study, we demonstrate another potential benefit: the ability to control the timing of ignition with short, nanosecond pulses, thereby optimizing the type of mixture that burns in rapidly changing, stratified fuel-air mixtures. We study laser ignition at various timings during single and double injections at simulated gasoline engine conditions within a controlled, high-temperature, high-pressure vessel. Laser ignition is accomplished with a single low-energy (10 mJ), short duration (8 ns) Nd:YAG laser beam that is tightly focused (0.015 mm average measured 1/e₂ diameter) at a typical GDI spark plug location.
Technical Paper

Influence of Liquid Penetration Metrics on Diesel Spray Model Validation

2013-04-08
2013-01-1102
It is common practice to validate diesel spray models against experimental diesel-spray images based on elastic light scattering, but the metric used to define the liquid boundary in a modeled spray can be physically inconsistent with the liquid boundary detected by light scattering measurements. In particular, spray models typically define liquid penetration based on a liquid mass threshold, while light scattering signal intensities are based on droplet size and volume fraction. These metrics have different response characteristics to changes in ambient conditions and fuel properties. Thus, when spray models are “tuned” or calibrated to match these types of measurements, the predictive capabilities of these models can be compromised. In this work, we compare two different liquid length metrics of an evaporating, non-reacting n-dodecane spray under diesel-like conditions using KIVA-3V.
Technical Paper

Expanding the Role of the Wind-Driven Manipulator

1997-10-01
975589
The wind-driven dynamic manipulator is a device which uses the wind tunnel freestream energy to drive multi-axis maneuvers of test models. This paper summarizes work performed using the device in several applications and discusses current work on characterizing the aerodynamics of an X-38 vehicle model in pitch-yaw maneuvers. Previous applications in flow visualization, adaptive control and linear-domain parameter identification are now extended to multi-axis inverse force and moment measurement over large ranges of attitude. A pitch-yaw-roll version is operated with active roll to measure forces and moments during maneuvers. A 3-D look-up table generated from direct force calibration allows operation of the manipulator through nonlinear regimes where control wing stall and boom wake-wing interactions are allowed to occur. Hybrid designs combining conventional and wind-driven degrees of freedom are discussed.
Technical Paper

Engineering a Space Based Construction Robot

2005-10-03
2005-01-3406
This paper describes a machine to quarry construction material, sinter walls, and assemble future space station modules. In prior work, we explored the solar energy requirements to build a 50m diameter, 50m high, cylindrical module out of pulverized rock from a Near-Earth Object, using tailored radio wave fields. In this paper, we describe the issues in the conceptual design of the robotic construction machines. The 4-legged Rock breaker is designed to fit the payload bay of a modern heavy-lift booster to reach Low Earth Orbit, and primary solar-sail propulsion for most of its journey. It uses beamed microwave energy for its cutting operations. Rotating, telescoping arms use integrated laser/plasma jet cutter arrays to dig trenches in spiral patterns which will form blocks of material. Cut blocks are sent into a toroidal cloud of material for use in the force field tailoring for automatic module formation.
Technical Paper

Enabling Advanced Design Methods in an Internet-Capable Framework

1999-10-19
1999-01-5578
The enabling of advanced design methods in an internet-capable framework will be discussed in this paper. The resulting framework represents the next generation of design and analysis capability in which engineering decision- making can be done by geographically distributed team members. A new internet technology called the lean-server approach is introduced as a mechanism for granting Web browser access to frameworks and domain analyses. This approach has the underpinnings required to support these next generation frameworks - collaboratories. A historical perspective of design frameworks is discussed to provide an understanding of the design functionality that is expected from framework implementations to insure design technology advancement. Two research areas were identified as being important to the development of collaboratories: design portals and collaborative methods.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Coaxial Rotor Flow Phenomena in Forward Flight

2016-09-20
2016-01-2009
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor forward flight speeds. In addition, coaxial rotorcraft systems do not need a tail rotor, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possible aerodynamic interactions between rotor blades, blades and vortices, and between vortices. With two rotors, the parameter design space is very large, and requires efficient computations as well as basic experiments to explore aerodynamics of a coaxial rotor and the effects on performance, loads, and acoustics.
Technical Paper

Analysis of Aerobatic Flight Safety Using Autonomous Modeling and Simulation

2000-04-11
2000-01-2100
An affordable technique is proposed for fast quantitative analysis of aerobatics and other complex flight domains of highly maneuverable aircraft. A generalized autonomous situational model of the “pilot (automaton) – vehicle – operational environment” system is employed as a “virtual test article”. Using this technique, a systematic knowledge of the system behavior in aerobatic flight can be generated on a computer, much faster than real time. This information can be analyzed via a set of knowledge mapping formats using a 3-D graphics visualization tool. Piloting and programming skills are not required in this process. Possible applications include: aircraft design and education, applied aerodynamics, flight control systems design, planning and rehearsal of flight test and display programs, investigation of aerobatics-related flight accidents and incidents, physics-based pilot training, research into new maneuvers, autonomous flight, and onboard AI.
Technical Paper

Aerodynamic Load Maps of Vehicle Shapes at Arbitrary Attitude

2015-09-15
2015-01-2574
The interest in flying cars comes with the question of characterizing aerodynamic loads on shapes that go beyond traditional aircraft shapes. When carried as slung loads under aircraft, vehicles can encounter severe aerodynamic loads, which may also cause them to go into divergent oscillations that can threaten the vehicle and aircraft. Slung loads can encounter the wind at arbitrary attitudes. Flight test certification for every vehicle-aircraft combination is prohibitive. Characterizing the aerodynamic loads with sufficient resolution for use in dynamic simulation, has in the past been extremely arduous. Sharp changes that drive instabilities arise over small ranges of yaw and pitch. With the Continuous Rotation technique developed by our group, aerodynamic load characterization is viable and efficient. With two well-chosen attitude sweeps and appropriate transformations, the entire 6-DOF load map can be obtained, for several rates.
Technical Paper

A General Effectiveness Methodology for Aircraft Survivability Assessments

1987-10-01
871905
The quantification of aircraft survivability in modern battlefield environments is a complex mathematical problem. In general, consideration must be given to the quantification of aircraft vulnerability to individual weapon systems, single encounter aircraft survivability, and the mathematical mapping of single encounter aircraft survivability into mission attrition. A methodology for quantifying the impacts of electronic warfare (EW) upon aircraft survivability is realized by the General Effectiveness Methodology (GEM) which is based upon a hierarchy of computer models. This paper describes this hierarchy of computer simulation tools which extensively employs probability theory to estimate the various engagement events such as aircraft detection, acquisition, missile launch, missile intercept, and probability of aircraft kill.
X