Refine Your Search

Topic

Author

Search Results

Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Technical Paper

Tradeoff Study of High Altitude Solar Reflector Concepts

2017-09-19
2017-01-2143
A direct solution to Global Warming would be to reflect a part of sunlight back into Space. A system tradeoff study is being developed with three of the concepts that are being evaluated as long-endurance high-altitude reflectors. The first concept is a high aspect ratio solar powered flying wing towing reflector sheets. This concept is named “Flying Carpet”. Second is a centrifugally stretched high altitude solar reflector (CSHASR). The CSHASR has 4 rotors made of reflector sheets with a hub stretching to 60 percent of the radius, held together by an ultralight quad-rotor structure. Each rotor is powered by a solar-electric motor. A variation on this concept, forced by nighttime descent rate concerns, is powered by tip-mounted solar panels and propellers with some battery storage augmenting rotational inertia as well as energy storage. The third concept is an Aerostatically Balanced Reflector (ABR) sheet, held up by hydrogen balloons.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

Time Irreversibility and Comparison of Cyclic-Variability Models

1999-03-01
1999-01-0221
We describe a method for detecting and quantifying time irreversibility in experimental engine data. We apply this method to experimental heat-release measurements from four spark-ignited engines under leaning fueling conditions. We demonstrate that the observed behavior is inconsistent with a linear Gaussian random process and is more appropriately described as a noisy nonlinear dynamical process.
Technical Paper

The Role of Turbulent-Chemistry Interaction in Simulating End-of-Injection Combustion Transients in Diesel Sprays

2017-03-28
2017-01-0838
This study investigates the role of turbulent-chemistry interaction in simulations of diesel spray combustion phenomena after end-of-injection (EOI), using the commercially-available CFD code CONVERGE. Recent experimental and computational studies have shown that the spray flame dynamics and mixture formation after EOI are governed by turbulent entrainment, coupled with rapid evolution of the thermo-chemical state of the mixture field. A few studies have shown that after EOI, mixtures between the injector nozzle and the lifted diffusion flame can ignite and appear to propagate back towards the injector nozzle via an auto-ignition reaction sequence; referred to as “combustion recession”.
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

The Direct Transition of Fuel Sprays to theDense-Fluid Mixing Regime in the Contextof Modern Compression Ignition Engines

2018-04-03
2018-01-0298
Fuel supercriticality has recently received significant attention due to the elevated pressures and temperatures that directly-injected (DI) fuel sprays encounter in modern internal combustion (IC) engines. This paper presents a theoretical examination of conventional and alternative DI fuels at conditions relevant to the operation of compression ignition (CI) engines. The focus is to identify the conditions under which the injected liquid fuel can bypass the atomization process and directly transition to a diffusional mixing regime with the chamber gas. Evaluating the microscopic length-scales of the phase boundary associated with the injection of liquid nitrogen into its own vapor, it is found that the conventional threshold based on the interfacial Knudsen number (i.e. Kn = 0.1) does not adequately quantify the direct transition between sub- and supercriticality. Instead, a threshold that is an order of magnitude smaller is more appropriate for this purpose.
Journal Article

Technology Selection for Optimal Power Distribution Efficiency in a Turboelectric Propulsion System

2012-10-22
2012-01-2180
Turboelectric propulsion is a technology that can potentially reduce aircraft noise, increase fuel efficiency, and decrease harmful emissions. In a turbo-electric system, the propulsor (fans) is no longer connected to the turbine through a mechanical connection. Instead, a superconducting generator connected to a gas turbine produces electrical power which is delivered to distributed fans. This configuration can potentially decrease fuel burn by 10% [1]. One of the primary challenges in implementing turboelectric electric propulsion is designing the power distribution system to transmit power from the generator to the fans. The power distribution system is required to transmit 40 MW of power from the generator to the electrical loads on the aircraft. A conventional aircraft distribution cannot efficiently or reliably transmit this large amount of power; therefore, new power distribution technologies must be considered.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Journal Article

Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction

2011-04-12
2011-01-0686
The fuel-ambient mixture in vaporized fuel jets produced by liquid sprays is fundamental to the performance and operation of engines. Unfortunately, experimental difficulties limit the direct measurement of local fuel-ambient mixture, inhibiting quantitative assessment of mixing. On the other hand, measurement of global quantities, such as the jet penetration rate, is relatively straightforward. Simplified models to predict local fuel-ambient mixture have also been developed, based on these global parameters. However, experimental data to validate these models over a range of conditions is needed. In the current work, we perform measurements of jet global quantities such as vapor-phase penetration, liquid-phase penetration, spreading angle, and nozzle flow coefficients over a range of conditions in a high-temperature, high-pressure vessel.
Technical Paper

Pressure Field Evolution on Rotor Blades at High Advance Ratio

2016-09-20
2016-01-2010
The design of advanced rotorcraft requires knowledge of the flowfield and loads on the rotor blade at extreme advance ratios (ratios of the forward flight speed to rotor tip speed). In this domain, strong vortices form below the rotor, and their evolution has a sharp influence on the aero-dynamics loads experienced by the rotor, particularly the loads experienced at pitch links. To understand the load distribution, the surface pressure distribution must be captured. This has posed a severe problem in wind tunnel experiments. In our experiments, a 2-bladed teetering rotor with collective and cyclic pitch controls is used in a low speed subsonic wind tunnel in reverse flow. Stereoscopic particle image velocimetry is used to measure the three component spatial velocity field. Measurement accuracy is now adequate for velocity data, and can be converted to pressure both at and away from the blade surface.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Technical Paper

Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines

2007-10-29
2007-01-4030
In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both conventional diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study.
Technical Paper

Novel, Compact Devices for Reducing Fluid-Borne Noise

2011-05-17
2011-01-1533
Hydraulic systems pose a particular problem for noise control. Due to the high speed of sound in hydraulic fluids, components typically designed to reduce fluid-borne noise can easily exceed practical size constraints. This paper presents novel solutions to creating compact and effective noise control devices for fluid power systems. A hydraulic silencer is presented that utilizes a voided polymer lining in lieu of a pressurized bladder. Theoretical modeling is developed which predicts device performance and can assist in future design work. Experimental results are presented to demonstrate the performance of the device. Both voided and non-voided liners are tested to show the effect of the voiding on the performance. In addition, theoretical modeling and experimental results are presented for a prototype Helmholtz resonator that is two orders of magnitude smaller than previously developed devices.
Technical Paper

Monitoring and Diagnostics for Electric Drivetrain Components in HEVs

2006-04-03
2006-01-1124
This paper presents monitoring and diagnostic techniques for drivetrain components in hybrid electric vehicles (HEVs). The particular focus of this work is the gear box of the drivetrain and mechanical faults of the electric motor. Permanent magnet motor magnet failures and rotor eccentricities are investigated and diagnosed. For induction motors, the presented mechanical fault cases are electrical rotor asymmetries (defective bars and end rings) and rotor eccentricities, as well. Apart from stationary operation, the presented techniques can also be applied to transient operating conditions. Measurement results are presented and discussed.
Technical Paper

MODELING AND CONTROL OF TRANSIENT ENGINE CONDITIONS

2001-10-01
2001-01-3231
In gasoline direct injection engines, fuel is injected into the port walls and the valve. During the engine startup cycle, the temperature of these parts is not adequate to evaporate all the fuel that impacts the walls. As a result, a fraction of the injected fuel does not contribute to the combustion cycle. This fraction forms fuel puddles (wall-wetting) and a portion of it passes to the crankcase. The efficiency of the engine during the startup cycle is decreased and hydrocarbon emissions increased. It is obvious that a control strategy is necessary to minimize the effects of this transient performance of the engine. This paper investigates a modeling framework for the valve, and simulation results validate model performance when compared to available experimental data. The simulation studies lead to a conceptual control design, which is briefly outlined.
X