Refine Your Search

Topic

Search Results

Technical Paper

Viable Designs Through a Joint Probabilistic Estimation Technique

1999-10-19
1999-01-5623
A key issue in complex systems design is measuring the ‘goodness’ of a design, i.e. finding a criterion through which a particular design is determined to be the ‘best’. Traditional choices in aerospace systems design, such as performance, cost, revenue, reliability, and safety, individually fail to fully capture the life cycle characteristics of the system. Furthermore, current multi-criteria optimization approaches, addressing this problem, rely on deterministic, thus, complete and known information about the system and the environment it is exposed to. In many cases, this information is not be available at the conceptual or preliminary design phases. Hence, critical decisions made in these phases have to draw from only incomplete or uncertain knowledge. One modeling option is to treat this incomplete information probabilistically, accounting for the fact that certain values may be prominent, while the actual value during operation is unknown.
Technical Paper

Trail-Braking Driver Input Parameterization for General Corner Geometry

2008-01-02
2008-01-2986
Trail-Braking (TB) is a common cornering technique used in rally racing to negotiate tight corners at (moderately) high speeds. In a previous paper by the authors it has been shown that TB can be generated as the solution to the minimum-time cornering problem, subject to fixed final positioning of the vehicle after the corner. A TB maneuver can then be computed by solving a non-linear programming (NLP). In this work we formulate an optimization problem by relaxing the final positioning of the vehicle with respect to the width of the road in order to study the optimality of late-apex trajectories typically followed by rally drivers. We test the results on a variety of corners. The optimal control inputs are approximated by simple piecewise linear input profiles defined by a small number of parameters. It is shown that the proposed input parameterization can generate close to optimal TB along the various corner geometries.
Technical Paper

Tradeoff Study of High Altitude Solar Reflector Concepts

2017-09-19
2017-01-2143
A direct solution to Global Warming would be to reflect a part of sunlight back into Space. A system tradeoff study is being developed with three of the concepts that are being evaluated as long-endurance high-altitude reflectors. The first concept is a high aspect ratio solar powered flying wing towing reflector sheets. This concept is named “Flying Carpet”. Second is a centrifugally stretched high altitude solar reflector (CSHASR). The CSHASR has 4 rotors made of reflector sheets with a hub stretching to 60 percent of the radius, held together by an ultralight quad-rotor structure. Each rotor is powered by a solar-electric motor. A variation on this concept, forced by nighttime descent rate concerns, is powered by tip-mounted solar panels and propellers with some battery storage augmenting rotational inertia as well as energy storage. The third concept is an Aerostatically Balanced Reflector (ABR) sheet, held up by hydrogen balloons.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
Journal Article

Model-Based Optimization of a Hydraulic Backhoe using Multi-Attribute Utility Theory

2009-04-20
2009-01-0565
Modeling and simulation are commonly used in all stages of the design process. This is particularly vital to the success of systems engineering projects where the system under consideration is complex and involves interactions between many interdisciplinary subsystems. In the refining stages of the design process (after concept selection), models and simulations can be used to refine and optimize a system with respect to the decision maker’s objectives. In this paper, a dynamic model of a hydraulic backhoe serves as a test-bed for a large-scale sensitivity analysis and subsequent optimization of the most significant design parameters. The model is optimized under uncertainty with respect to a multi-attribute utility function that includes fuel consumption, cost of the key components, and machine performance.
Journal Article

Kinematic Study of the GM Front-Wheel Drive Two-Mode Transmission and the Toyota Hybrid System THS-II Transmission

2011-04-12
2011-01-0876
General Motors has recently developed a front-wheel drive version of its two planetary two-mode transmission (2-MT) for a hybrid-electric vehicle powertrain [1]. This newer transmission includes two planetary gears with two transfer clutches and two braking clutches. With activation of designated pairs of these four clutches, four fixed-gear ratios between the transmission's input shaft and output shaft are obtained. In addition, activation of specific individual clutches gives two modes of operation whereby the IC engine speed is decoupled from the vehicle velocity thus providing an electrical continuously variable transmission (ECVT). This present paper extends the power-split analysis in [2] by deriving a safe-operating region (SOR) in the plane of IC engine speed vs. vehicle velocity for the four fixed-gear and two ECVT modes. This SOR is bounded by the speed limitations of the 2-MT components. Similar results are presented for the Toyota Hybrid System II (THS-II) transmission.
Technical Paper

Influence of Liquid Penetration Metrics on Diesel Spray Model Validation

2013-04-08
2013-01-1102
It is common practice to validate diesel spray models against experimental diesel-spray images based on elastic light scattering, but the metric used to define the liquid boundary in a modeled spray can be physically inconsistent with the liquid boundary detected by light scattering measurements. In particular, spray models typically define liquid penetration based on a liquid mass threshold, while light scattering signal intensities are based on droplet size and volume fraction. These metrics have different response characteristics to changes in ambient conditions and fuel properties. Thus, when spray models are “tuned” or calibrated to match these types of measurements, the predictive capabilities of these models can be compromised. In this work, we compare two different liquid length metrics of an evaporating, non-reacting n-dodecane spray under diesel-like conditions using KIVA-3V.
Technical Paper

Facilitating the Energy Optimization of Aircraft Propulsion and Thermal Management Systems through Integrated Modeling and Simulation

2010-11-02
2010-01-1787
An integrated, multidisciplinary environment of a tactical aircraft platform has been created by leveraging the powerful capabilities of both MATLAB/Simulink and Numerical Propulsion System Simulation (NPSS). The overall simulation includes propulsion, power, and thermal management subsystem models, which are integrated together and linked to an air vehicle model and mission profile. The model has the capability of tracking temperatures and performance metrics and subsequently controlling characteristics of the propulsion and thermal management subsystems. The integrated model enables system-level trade studies involving the optimization of engine bleed and power extraction and thermal management requirements to be conducted. The simulation can also be used to examine future technologies and advanced thermal management architectures in order to increase mission capability and performance.
Technical Paper

Engineering a Space Based Construction Robot

2005-10-03
2005-01-3406
This paper describes a machine to quarry construction material, sinter walls, and assemble future space station modules. In prior work, we explored the solar energy requirements to build a 50m diameter, 50m high, cylindrical module out of pulverized rock from a Near-Earth Object, using tailored radio wave fields. In this paper, we describe the issues in the conceptual design of the robotic construction machines. The 4-legged Rock breaker is designed to fit the payload bay of a modern heavy-lift booster to reach Low Earth Orbit, and primary solar-sail propulsion for most of its journey. It uses beamed microwave energy for its cutting operations. Rotating, telescoping arms use integrated laser/plasma jet cutter arrays to dig trenches in spiral patterns which will form blocks of material. Cut blocks are sent into a toroidal cloud of material for use in the force field tailoring for automatic module formation.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

Development of Response Surface Equations for High-Speed Civil Transport Takeoff and Landing Noise

1997-10-01
975570
As an element of a design optimization study of high speed civil transport (HSCT), response surface equations (RSEs) were developed with the goal of accurately predicting the sideline, takeoff, and approach noise levels for any combination of selected design variables. These RSEs were needed during vehicle synthesis to constrain the aircraft design to meet FAR 36, Stage 3 noise levels. Development of the RSEs was useful as an application of response surface methodology to a previously untested discipline. Noise levels were predicted using the Aircraft Noise Prediction Program (ANOPP), with additional corrections to account for inlet and exhaust duct lining, mixer-ejector nozzles, multiple fan stages, and wing reflection. The fan, jet, and airframe contributions were considered in the aircraft source noise prediction.
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

An Analytic Foundation for the Two-Mode Hybrid-Electric Powertrain with a Comparison to the Single-Mode Toyota Prius THS-II Powertrain

2009-04-20
2009-01-1321
General Motors has introduced a Two-Mode Transmission (2-MT) that provides significant improvements over the Toyota THS-II transmission. These improvements are achieved by employing additional planetaries with clutches and brakes to switch from a Mode-1 to Mode-2 as vehicle speed increases. In addition the 2-MT has four fixed-gear ratios that provide for a purely mechanical energy path from the IC engine to the driven wheels with the electric machines also able to provide additional driving torque. The purpose of this present paper is to extend the methodology in a previous paper [1] to include the 2-MT, thereby presenting an analytic foundation for its operation. The main contribution in this analysis is in the definition of dimensionless separation factors, defined in each mode that govern the power split between the parallel mechanical and electrical energy paths from the IC engine to the driven wheels.
Technical Paper

Aerothermodynamic Design of Supersonic Channel Airfoils for Drag Reduction

1997-10-01
975572
A supersonic channel airfoil (SCA) concept that can be applied to the leading edges of wings, tails, fins, struts, and other appendages of aircraft, atmospheric entry vehicles and missiles in supersonic flight for drag reduction is described. It is designed to be beneficial at conditions in which the leading edge is significantly blunted and the Mach number normal to the leading edge is supersonic. The concept is found to result in significantly reduced wave drag and total drag (including skin friction drag) and significantly increased L/D. While this reduction over varying flight conditions has been quantified, some leading edge geometries result in adverse increases in peak heat transfer rates. To evaluate the effectiveness of SCAs in reducing drag without paying any penalties in other areas like lifting capacity, heating rates or enclosed volume, the design space was studied in greater detail using MDO methods.
X