Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Journal Article

Sustainable Manufacturing Analysis using an Activity Based Object Oriented Method

2009-11-10
2009-01-3229
This article begins by describing the need for a new method and tool for performing a sustainability assessment for manufacturing processes and systems. A brief literature survey is done to highlight the major existing methods and tools, their function, and their shortcomings. The article goes on to describe the general approach of the method before describing a computer aided tool that has been developed to implement the method. The article concludes with a walk through of a generic use case that describes where such a method would be useful and how such a tool would be implemented.
Technical Paper

Real-Time Integrated Economic and Environmental Performance Monitoring of a Production Facility

2001-03-05
2001-01-0625
In this paper, we describe our work and experiences with integrating environmental and economic performance monitoring in a production facility of Interface Flooring Systems, Inc. The objective of the work is to create a ‘dashboard’ that integrates environmental and economic monitoring and assessment of manufacturing processes, and provides engineers and managers an easy to use tool for obtaining valid, comparable assessment results that can be used to direct attention towards necessary changes. To this purpose, we build upon existing and familiar cost management principles, in particular Activity-Based Costing and Management (ABC&ABM), and we extend those into environmental management in order to obtain a combined economic and environmental performance measurement framework (called Activity-Based Cost and Environmental Management).
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
Technical Paper

On-Line Identification of End Milling Cutter Runout

1996-05-01
961638
Cutter runout has been a target for monitoring and control of machining processes in view of the constraint it places on the achievable productivity. Off-line metrology based on various displacement probes such as dial indicators or proximity sensors provides information regarding the runout characteristics in a non-cutting state. However, during the actual process of machining off-line calibrations often become irrelevant since the cutting parameters and machining configuration significantly affect the behavior of runout. This paper presents a methodology of in-process identification of cutter runout in end milling based on the analysis of cutting forces. The presence of cutter runout generates cutting force components at one spindle frequency above and below the tooth passing frequency.
Technical Paper

Nonlinear Adaptive Control of Tiltrotor Aircraft Using Neural Networks

1997-10-13
975613
Neural network augmented model inversion control is used to provide a civilian tilt-rotor aircraft with consistent response characteristics throughout its operating envelope, including conversion flight. The implemented response types are Attitude Command Attitude Hold in the longitudinal channel, and Rate Command Attitude Hold about the roll and yaw axes. This article describes the augmentation in the roll channel and the augmentation for the yaw motion including Heading Hold at low airspeeds and automatic Turn Coordination at cruise flight. Conventional methods require extensive gain scheduling with tilt-rotor nacelle angle and airspeed. A control architecture is developed that can alleviate this requirement and thus has the potential to reduce development time. It also facilitates the implementation of desired handling qualities, and permits compensation for partial failures.
Technical Paper

Narrow-Band Excitation of Vortex Flows

2015-09-15
2015-01-2572
At high angles of attack, the flow over a swept wing generates counter-rotating vortical features. These features can amplify into a nearly sinusoidal fluctuation of velocity components. The result is excitation of twin-fin buffeting, driven at clearly predictable frequencies, or at nearby lock-in frequencies of the fin structure. This is distinct from the traditional model of fin buffeting as a structural resonant response to broadband, large-amplitude excitation from vortex core bursting. Hot-film anemometry was conducted ahead of the vertical fins of a 1:48 scale model of the F-35B aircraft, in the angle of attack range between 18 and 30 degrees. Auto spectral density functions from these data showed a sharp spectral peak in the flow ahead of the fins for angles of attack between 20 and 28 degrees. Small fences placed on the top surface of the wing eliminated the spectral peak, leaving only a broadband turbulent spectrum.
Technical Paper

Impact of Configuration and Requirements on the Sonic Boom of a Quiet Supersonic Jet

2002-11-05
2002-01-2930
Market forecasts predict a potentially large market for a Quiet Supersonic Business Jet provided that several technical hurdles are overcome prior to fielding such a vehicle. In order to be economically viable, the QSJ must be able to fly at supersonic speeds overland and operate from regional airports in addition to meeting government noise and emission requirements. As a result of these conflicting constraints on the design, the process of selecting a configuration for low sonic boom is a difficult one. Response Surface Methodology along with physics-based analysis tools were used to create an environment in which the sonic boom can be studied as a function of design and mission parameters. Ten disciplinary codes were linked with a sizing and synthesis code by using a commercial wrapper in order to calculate the required responses with the desired level of fidelity.
Technical Paper

Expanding the Role of the Wind-Driven Manipulator

1997-10-01
975589
The wind-driven dynamic manipulator is a device which uses the wind tunnel freestream energy to drive multi-axis maneuvers of test models. This paper summarizes work performed using the device in several applications and discusses current work on characterizing the aerodynamics of an X-38 vehicle model in pitch-yaw maneuvers. Previous applications in flow visualization, adaptive control and linear-domain parameter identification are now extended to multi-axis inverse force and moment measurement over large ranges of attitude. A pitch-yaw-roll version is operated with active roll to measure forces and moments during maneuvers. A 3-D look-up table generated from direct force calibration allows operation of the manipulator through nonlinear regimes where control wing stall and boom wake-wing interactions are allowed to occur. Hybrid designs combining conventional and wind-driven degrees of freedom are discussed.
Technical Paper

Digital Human Modeling for Universal Design

2003-06-17
2003-01-2199
Several research institutions and universities have taken on the challenge of providing solutions for accessible and universally designed workplace accommodations with a focus on people with disabilities. Accessible Design is a subset of what is termed Universal Design. Where Universal Design covers the design of products, systems and environments for all people and encompasses all design principles, Accessible Design focuses on principles that extend the standard design process to those people with some type of performance limitation. In order for individuals with disabiltities to gain better access to the work environments and the products that facilitate independence, health, safety, and social participation a multi-disciplined approach to the research is needed to identify needs and challenges of the targeted population.
Technical Paper

Development of an Automated Part Loading and Unloading System for a Cylindrical Die Thread Roller

2007-09-17
2007-01-3916
This paper outlines the design of a part transport and loading/unloading automation system for a cylindrical die thread roller, enumerating many of the design decisions encountered. Specifically, a transport tray system is proposed and prototyped as a benchmark for factory automation. Details of an automation system which will interface with the proposed transport tray system are discussed. A gripping system which accommodates a wide variety of fastener head styles is developed to work in conjunction with the tray concept, and prototyped with favorable results.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Comparison of Water Strategy Tools for Automotive Manufacturing

2014-04-01
2014-01-1958
Tools are now publicly available that can potentially help a company assess the impact of its water use and risks in relation to their global operations and supply chains. In this paper we describe a comparative analysis of two publicly available tools, specifically the WWF/DEG Water Risk Filter and the WBCSD Global Water Tool that are used to measure the water impact and risk indicators for industrial facilities. By analyzing the risk assessments calculated by these tools for different scenarios that include varying facilities from different industries, one can better gauge the similarities and differences between these water strategy tools. Several scenarios were evaluated using the water tools, and the results are compared and contrasted. As will be shown, the results can vary significantly.
Technical Paper

Aircraft Control Using Stagnation Point Displacement

1997-10-01
975590
A Stagnation Point Actuator is used to control the lateral dynamics of vortices generated over a sharp-pointed forebody, at high angles of attack, and the resulting rolling moment is studied. Effective roll control is demonstrated, including the ability to suppress the wing rock phenomenon. Piecewise-linear transfer functions are developed from experimental data for the changes in roll moment and pressure difference with actuator frequency content. These transfer functions are reduced to compact form in the frequency domain, and then to a time-domain model using 2 gains and 2 time scales. The roll response is classified according to angle of attack range. Some long time scales are observed in the surface pressure, velocity field and rolling moment, making the response relatively insensitive to speed. Thus over substantial speed ranges, linear transfer functions are shown to effectively describe the roll response to motion of the Stagnation Point Actuator.
Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
X