Refine Your Search

Topic

Author

Search Results

Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Technical Paper

Viable Designs Through a Joint Probabilistic Estimation Technique

1999-10-19
1999-01-5623
A key issue in complex systems design is measuring the ‘goodness’ of a design, i.e. finding a criterion through which a particular design is determined to be the ‘best’. Traditional choices in aerospace systems design, such as performance, cost, revenue, reliability, and safety, individually fail to fully capture the life cycle characteristics of the system. Furthermore, current multi-criteria optimization approaches, addressing this problem, rely on deterministic, thus, complete and known information about the system and the environment it is exposed to. In many cases, this information is not be available at the conceptual or preliminary design phases. Hence, critical decisions made in these phases have to draw from only incomplete or uncertain knowledge. One modeling option is to treat this incomplete information probabilistically, accounting for the fact that certain values may be prominent, while the actual value during operation is unknown.
Technical Paper

Trail-Braking Driver Input Parameterization for General Corner Geometry

2008-01-02
2008-01-2986
Trail-Braking (TB) is a common cornering technique used in rally racing to negotiate tight corners at (moderately) high speeds. In a previous paper by the authors it has been shown that TB can be generated as the solution to the minimum-time cornering problem, subject to fixed final positioning of the vehicle after the corner. A TB maneuver can then be computed by solving a non-linear programming (NLP). In this work we formulate an optimization problem by relaxing the final positioning of the vehicle with respect to the width of the road in order to study the optimality of late-apex trajectories typically followed by rally drivers. We test the results on a variety of corners. The optimal control inputs are approximated by simple piecewise linear input profiles defined by a small number of parameters. It is shown that the proposed input parameterization can generate close to optimal TB along the various corner geometries.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Role of Turbulent-Chemistry Interaction in Simulating End-of-Injection Combustion Transients in Diesel Sprays

2017-03-28
2017-01-0838
This study investigates the role of turbulent-chemistry interaction in simulations of diesel spray combustion phenomena after end-of-injection (EOI), using the commercially-available CFD code CONVERGE. Recent experimental and computational studies have shown that the spray flame dynamics and mixture formation after EOI are governed by turbulent entrainment, coupled with rapid evolution of the thermo-chemical state of the mixture field. A few studies have shown that after EOI, mixtures between the injector nozzle and the lifted diffusion flame can ignite and appear to propagate back towards the injector nozzle via an auto-ignition reaction sequence; referred to as “combustion recession”.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Supersonic Business Jet Design and Requirements Exploration using Multiobjective Interactive Genetic Algorithms

2005-10-03
2005-01-3398
Although market research has indicated that there is significant demand for a supersonic business aircraft, development of a feasible concept has proven difficult. Two factors contributing to this difficulty are the uncertain nature of the vehicle’s requirements and the fact that conventional design methods are inadequate to solve such non-traditional problems. This paper describes the application of a multiobjective genetic algorithm to the design space exploration of such a supersonic business jet. Results obtained using this method are presented, and give insight into the important decisions that must be made at the early stages of a design project.
Technical Paper

Split Ring Resonator-based Metamaterial with Total Bandgap for Reducing NVH in Electric Vehicles

2024-04-09
2024-01-2348
We propose a novel Split Ring Resonator (SRR) metamaterial capable of achieving a total (or complete) bandgap in the material’s band structure, thereby reflecting airborne and structure-borne noise in a targeted frequency range. Electric Vehicles (EVs) experience tonal excitation arising from switching frequencies associated with motors and inverters, which can significantly affect occupant perception of vehicle quality. Recently proposed metamaterial designs reflect airborne noise and structure-borne transverse waves over a band of frequencies, but do not address structure-borne longitudinal waves in the same band. To achieve isolation of acoustic, transverse, and longitudinal elastic waves associated with tonal frequencies, we propose a metamaterial super cell with transverse and longitudinal resonant frequencies falling in a total bandgap. We calculate the resonant frequencies and corresponding mode shapes using finite element (FE) modal analysis.
Technical Paper

Specification of a P3 Parallel Hybrid Electric Vehicle Architecture for the EcoCAR 3 Competition

2016-04-05
2016-01-1245
The Georgia Tech EcoCAR 3 team’s selection of a parallel hybrid electric vehicle (HEV) architecture for the EcoCAR 3 competition is presented in detail, with a focus on the team’s modeling and simulation efforts and how they informed the team’s architecture selection and subsequent component decisions. EcoCAR 3, sponsored by the United States Department of Energy and General Motors, is the latest in a series of Advanced Vehicle Technology Competitions (AVTCs) and features 16 universities from the United States and Canada competing to transform the 2016 Chevrolet Camaro into a hybrid electric American performance vehicle. Team vehicles will be scored on performance, emissions, fuel economy, consumer acceptability, and more over the course of the four-year competition. During the first year, the Georgia Tech team considered numerous component combinations and HEV architectures, including series RWD and AWD, parallel, and power-split.
Technical Paper

Simulation of Traffic at a Four-Way Stop Intersection

1968-02-01
680170
While a number of important attempts have been made to describe characteristics of an intersection purely in mathematical terms, the most fruitful research from a practical standpoint has utilized simulation. This paper reports the results of research in which a four-way stop intersection was simulated on a digital computer. Inputs to the program were based on field studies at three intersections in metropolitan Atlanta using mathematical models and Monte Carlo techniques. Field data were taken with the aid of a spring wound Esterline-Angus 20-pen event recorder and time lapse movies. The simulation model was used to study the effectiveness of the four-way stop at various approach volumes and turning movement combinations. Results of experiments conducted on the simulation model are given by graphs showing the relationship between traffic volumes and average delay, per cent delayed, and average queue length.
Journal Article

Security Analysis of Android Automotive

2020-04-14
2020-01-1295
In-vehicle infotainment (IVI) platforms are getting increasingly connected. Besides OEM apps and services, the next generation of IVI platforms are expected to offer integration of third-party apps. Under this anticipated business model, vehicular sensor and event data can be collected and shared with selected third-party apps. To accommodate this trend, Google has been pushing towards standardization among proprietary IVI operating systems with their Android Automotive platform which runs natively on the vehicle’s IVI platform. Unlike Android Auto’s limited functionality of display-projecting certain smartphone apps to the IVI screen, Android Automotive will have access to the in-vehicle network (IVN), and will be able to read and share various vehicular sensor data with third-party apps. This increased connectivity opens new business opportunities for both the car manufacturer as well as third-party businesses, but also introduces a new attack surface on the vehicle.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Technical Paper

Robust Trajectory Tracking Control for Intelligent Connected Vehicle Swarm System

2022-12-22
2022-01-7083
An intelligent connected vehicle (ICV) swarm system that includes N vehicles is considered. Based on the special properties of potential functions, a kinematic model describing the swarm performances is proposed, which allows all vehicles to enclose the tracking target and show both tracking and formation characteristics. Treating the performances as the desired constraints, the analytical form of constraint forces can be obtained inspired by the Udwadia-Kalaba approaches. A special approach of uncertainty decomposition to deal with uncertain interferences is proposed, and a switching-type robust control method is addressed for each vehicle agent in the swarm system. The features and validity of the addressed control are demonstrated in the numerical simulations.
Technical Paper

Quiet, Clean, and Efficient, but Heavy - Concerns for Future Fuel Cell Powered Personal Air Vehicles

2006-08-30
2006-01-2436
Unfortunately, the promises of efficient, clean, quiet power that fuel cells offer are balanced by extremely low power densities and great infrastructure-related challenges. Studies by government and industry have investigated their feasibility for primary propulsion in light aircraft. These studies have produced mixed results but have tended to rely on integrating fuel cells into existing airframes, with respectably-performing light sport planes being turned into underpowered show planes with horribly compromised range and payload capabilities. Fuel cells today are in the earliest phases of technological development. As an aircraft propulsion system, they are as advanced as the Wright's reciprocating engine was a hundred years ago.
Technical Paper

Progress in Rotorcraft Icing Computational Tool Development

2015-06-15
2015-01-2088
The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
Technical Paper

Probabilistic Analysis of an HSCT Modeled with an Equivalent Laminated Plate Wing

1997-10-01
975571
The High Speed Civil Transport (HSCT), a supersonic commercial transport currently under development, presents several challenges to traditional conceptual design. The current historical database used by many commercial transport design processes only include data for subsonic transports and therefore does not apply to innovative new configurations such as the HSCT. Therefore, physics-based, preliminary design tools must be used to model the characteristics of advanced aircraft in conceptual sizing routines. In addition, the evaluation of the aircraft design space often requires the analysis of many configurations in order to assess the impact of design constraints and determine the attainable range of system level metrics, a process which is very time consuming in both modeling and computer run time.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines

2007-10-29
2007-01-4030
In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both conventional diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study.
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
X