Refine Your Search

Topic

Author

Search Results

Technical Paper

Trade Study of an Interface for a Removable/Replaceable Thermal Micrometeoroid Garment

2008-06-29
2008-01-1990
Effective thermal and micrometeoroid protection as afforded by the Thermal Micrometeoroid Garment (TMG) is critical in achieving safe and efficient missions. It is also critical that the TMG does not increase torque or decreased range of motion which can cause crewmember discomfort, fatigue, and reduced efficiency. For future exploration missions, removable and replaceable TMGs will allow the use of different pressure garment protective covers and TMG configurations for launch, re-entry, 0-G Extra Vehicular Activity (EVA), and lunar surface EVA. A study was conducted with the goal of developing high Technology Readiness Level (TRL), scalable, interface design concepts for TMG systems. The affects of TMG segmentation on mobility and donning were assessed. Closure mechanisms were investigated and tested to determine their operability after exposure to lunar dust. A TMG configuration with the optimum number of segments and location of interfaces was selected for the Mark III spacesuit.
Technical Paper

Trade Study of an Exploration Cooling Garment

2008-06-29
2008-01-1994
A trade study was conducted with a goal to develop relatively high TRL design concepts for an Exploration Cooling Garment (ExCG) that can accommodate larger metabolic loads and maintain physiological limits of the crewmembers health and work efficiency during all phases of exploration missions without hindering mobility. Effective personal cooling through use of an ExCG is critical in achieving safe and efficient missions. Crew thermoregulation not only impacts comfort during suited operations but also directly affects human performance. Since the ExCG is intimately worn and interfaces with comfort items, it is also critical to overall crewmember physical comfort. Both thermal and physical comfort are essential for the long term, continuous wear expected of the ExCG.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Journal Article

The Orion Air Monitor; an Optimized Analyzer for Environmental Control and Life Support

2008-06-29
2008-01-2046
This paper describes the requirements for and design implementation of an air monitor for the Orion Crew Exploration Vehicle (CEV). The air monitor is specified to monitor oxygen, nitrogen, water vapor, and carbon dioxide, and participates with the Environmental Control Life Support System (ECLSS) pressure control system and Atmosphere Revitalization System (ARS) to help maintain a breathable and safe environment. The sensing requirements are similar to those delivered by the International Space Station (ISS) air monitor, the Major Constituent Analyzer or MCA (1, 2 and 3), and the predecessors to that instrument, the Skylab Mass Spectrometer (4, 5), although with a shift in emphasis from extended operations to minimized weight. The Orion emphasis on weight and power, and relatively simpler requirements on operating life, allow optimization of the instrument toward the mass of a sensor assembly.
Technical Paper

The Orion Air Monitor Performance Model; Dynamic Simulations and Accuracy Assessments in the CEV Atmospheric Revitalization Unit Application

2009-07-12
2009-01-2521
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
Technical Paper

The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

2007-07-09
2007-01-3038
Advanced water processors being developed for NASA's Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS), and is based primarily on ISS experience related to the development of the VRA.
Technical Paper

Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

2008-06-29
2008-01-2116
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. Also, the impact of MTSA on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA's Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

2007-07-09
2007-01-3205
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

2007-09-17
2007-01-3859
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA)- Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
Technical Paper

Smoke Detection for the Orion Crew Exploration Vehicle

2009-07-12
2009-01-2542
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronics to space-qualified components, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Technical Paper

Sensory Prognostics and Management System (SPMS)

2012-10-22
2012-01-2095
The Sensory Prognostics and Management Systems (SPMS) program sponsored by the Federal Aviation Administration and Boeing developed and evaluated designs to integrate advanced diagnostic and prognostic (i.e., Integrated Vehicle Health Management (IVHM) or Health Management (HM)) capabilities onto commercial airplanes. The objective of the program was to propose an advanced HM system appropriate for legacy and new aircraft and examine the technical requirements and their ramifications on the current infrastructure and regulatory guidance. The program approach was to determine the attractive and feasible HM applications, the technologies that are required to cost effectively implement these applications, the technical and certification challenges, and the system level and business consequences of such a system.
Technical Paper

Quality Function Deployment for the Shoulder Section of the Space Suit

2005-07-11
2005-01-3017
Spacesuit shoulder mobility is critical in performing EVA tasks. In addition, risk of failure must be minimized and injuries during operations and training eliminated. The pressure suit design elements that control shoulder mobility interact strongly and in complex ways with many aspects of the pressure suit and system design and are constrained by anthropometric factors. To properly develop the problem statement for the shoulder section in a new suit design that is appropriate for a return to the Moon and eventual exploration of Mars, a Quality Function Deployment (QFD) is under development. QFD is a powerful and widely used method to define your customers, determine their needs, benchmark the competition, and define engineering parameters and targets, that when met, will lead to a successful product. Since many of the requirements for the next generation suit are unknown, the QFD will continually be updated.
Technical Paper

Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits

2007-07-09
2007-01-3276
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs, while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in extravehicular activity (EVA) systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper describes the design and manufacture of the prototype system. The potential significance and application of the system is also discussed.
Journal Article

Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware Phase II

2009-07-12
2009-01-2541
An EMU water processing kit (Airlock Coolant Loop Recovery – A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of post-flight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives were implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit items, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements.
Journal Article

Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware

2008-06-29
2008-01-2060
Following the Columbia accident, the EMUs (Extravehicular Mobility Units) onboard the ISS (International Space Station) went unused for an extended period of time. Upon startup, the units experienced a failure in the coolant systems. The failure resulted in a loss of EVA (Extravehicular Activity) capability from the US segment of the ISS. A failure investigation determined that chemical and biological contaminants and byproducts from the ISS Airlock Heat Exchanger, and the EMU itself, fouled the magnetically coupled pump in the EMU Transport Loop Fan/Pump Separator leading to a lack of coolant flow. Remediation hardware (the Airlock Coolant Loop Remediation water processing kit) and a process to periodically clean the EMU coolant loops on orbit were devised and implemented. The intent of this paper is to report on the successful implementation of the resultant hardware and process, and to highlight the go-forward plan.
Technical Paper

Multifunctional Fiber Batteries for Next Generation Space Suits

2008-06-29
2008-01-1996
As next generation space suit concepts enable extravehicular activity (EVA) mission capability to extend beyond anything currently available today, revolutionary advances in life support technologies are required to achieve anticipated NASA mission profiles than may measure years in duration and require hundreds of sorties. Since most life support systems require power, increased mass and volume efficiency of the energy storage materials can have a dramatic impact on reducing the overall weight of next generation space suits. ITN Energy Systems, in collaboration with Hamilton Sundstrand and the NASA Johnson Space Center's EVA System's Team, is developing multifunctional fiber batteries to address these challenges. By depositing the battery on existing space suit materials, e.g. scrim fibers in the thermal micrometeoroid garment (TMG) layers, parasitic mass (inactive materials) is eliminated leading to effective energy densities ∼400 Wh/kg.
Technical Paper

Multifunctional Fiber Batteries for Next Generation Space Suits

2007-07-09
2007-01-3173
As next generation space suit concepts enable extravehicular activity (EVA) mission capability to extend beyond anything currently available today, revolutionary advances in life support technologies are required to achieve anticipated NASA mission profiles that may measure years in duration and require hundreds of sorties. Since most life support systems require power, increased mass and volume efficiency of the energy storage materials can have a dramatic impact on reducing the overall weight of next generation space suits. This paper details the development of a multifunctional fiber battery to address these needs.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
X