Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Status of ISS Oxygen Generation and Water Processor Assemblies

2003-07-07
2003-01-2691
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the international Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, hand wash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Performance of WPA Conductivity Sensor During Two-Phase Fluid Flow in Microgravity

2003-07-07
2003-01-2693
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two- phase fluid flow (gas/liquid) in microgravity. The source for this sensitivity is the fact that free gas will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in 1-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plane (KC-135) to measure the offset, which was determined to range between 0 and 50%. This range approximates the offset experienced in 1-g gas sensitivity testing.
Technical Paper

Development of a Rotary Separator Accumulator for Use on the International Space Station

2002-07-15
2002-01-2360
A Rotary Separator/Accumulator (RSA) has been developed to function as a phase separator and accumulator in the Oxygen Generator Assembly (OGA) in the microgravity environment of the International Space Station. The RSA design utilizes a fixed housing with rotating disks to create a centrifugal force field to separate hydrogen gas from water. The volume within the assembly is utilized to act as an accumulator for the OGA. During the development of the RSA, design refinements were made to meet the changing system operating requirements. Two proof of concept (POC) units and a “flight-like” development unit were fabricated and tested as system requirements evolved. Testing of the first POC unit demonstrated that a combined rotary separator and accumulator was feasible and showed areas where improvements could be made. The second POC unit incorporated a fifty percent volume increase to accommodate changing system requirements and geometry changes to help reduce power consumption.
Technical Paper

Development Status of the ISS Oxygen Generation Assembly and Key Components

2002-07-15
2002-01-2269
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop, an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. The OGA has been under development at HSSSI for 3 years. This paper will update last year's ICES paper on the design/development of the OGA.
Technical Paper

Development Status of ISS Water Processor Assembly

2002-07-15
2002-01-2363
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene wastewaters. All planned development testing has been completed and this paper provides the status of the development activities and results for the WPA.
Technical Paper

Development Status and Safety Features of ISS Oxygen Generation and Water Processor Assemblies

2000-07-10
2000-01-2349
Hamilton Sundstrand Space Systems International, Inc. HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recover System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Development Status and Maintainability Features of ISS Oxygen Generation and Water Processor Assemblies

2001-07-09
2001-01-2314
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Design and Operation of a Low Pressure Electrolyzer (LPE) for Submarine Applications

2001-07-09
2001-01-2441
A Low Pressure Electrolyzer (LPE) is being developed to provide metabolic oxygen aboard US nuclear submarines. The system is derived from a more complex system already developed for the Virginia Class of attack submarines. The LPE generates up to 250 standard cubic feet per hour (SCFH) of oxygen at ambient pressure through electrolysis of water utilizing SPE® (Solid Polymer Electrolyte) technology. The hydrogen is generated at pressures suitable for disposal overboard. The system operates unattended which minimizes crew workload, and can safely shut down without crew intervention. Generating oxygen at ambient pressure significantly reduces risk to personnel and greatly simplifies the system. Reliability, maintainability, safety, and ease of operation are major system design drivers.
X