Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Preliminary Design Methodology for an Advanced Extravehicular Mobility Unit Portable Life Support Subsystem

1995-07-01
951672
Developing advanced technology through the prototype phase on a system as complex as a Portable Life Support Subsystem (PLSS) for an Extravehicular Mobility Unit (EMU) is a time and resource consuming process. Experience has shown that most of the decisions controlling the life cycle cost of a system intended for operational use are made very early in the design process. By the preliminary design review most of the design-controlled cost drivers are locked into the design. To ensure a reasonable chance for the design to successfully meet mission requirements, it is best to choose the most promising, most likely-to-succeed technology available in the early stages of breadboard and preprototype development.
Technical Paper

ISS TransHab: Architecture Description

1999-07-12
1999-01-2143
This paper will describe the ISS TransHab’s architectural design being proposed as a habitation module for the International Space Station. TransHab is a space inflatable habitation module that originally was designed to support a crew of six as a transit habitat (TransHab) to and from Mars. As an evolution of TransHab, it has transformed into the proposed alternative habitat module for the International Space Station (ISS). A team of architects and engineers at the Johnson Space Center has been designing and testing this concept to make it a reality.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Advanced Space Suit Portable Life Support Subsystem Packaging Design

2006-07-17
2006-01-2202
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA's in-house 1998 study, which resulted in the “Flex PLSS” concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1.
Technical Paper

A General Concept of Designing an Autonomous Water System for Interplanetary Spaceships

1994-06-01
941537
A general concept of designing an autonomous water system for interplanetary spaceships is proposed. The system features a high reliability resulting from the mutual complement and partial or complete backup of the elements. The system consists of three interconnected subsystems: water-supplies, regenerative physicochemical and biological ones, each providing the crew with water during different stages of a long-term space mission. The system is expected to be a further step in developing a closed-cycle, autonomous, biotechnologies life-support system.
X