Refine Your Search

Topic

Author

Search Results

Technical Paper

A Progress Report on Electromagnetic Activity of Motor Vehicle Manufacturer's Association

1973-02-01
730057
Starting in 1965 and continuing through 1972, the Radio Committee of the Motor Vehicles Manufacturers Association (MVMA) has been the coordinator of a number of electromagnetic research projects. These investigations have included extensive applications of the updated SAE Standard, Measurement of Electromagnetic Radiation From Motor Vehicles (20-1000 MHz)-SAE J551a. Furthermore, there were joint testing programs with the Electronic Industries Association which encompassed measuring degradation in the performance of Land Mobile Radio Service receivers resulting from varying levels of impulsive-type radiation from motor vehicles. In addition, efforts were expended in using statistical approaches for testing a number of hypotheses covering a conversion of impulsive vehicle noise data to the interference potential to Land Mobile receivers.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

An Objective Method of Estimating Car Interior Aerodynamic Noise

1977-02-01
770393
A method of breaking down car interior noise measurements into aerodynamic noise, residual noise and aspiration noise is presented. Correlation between car interior aerodynamic noise extracted from “on the road” measurements and car interior aerodynamic noise measured in a wind tunnel indicate the validity of the method. Limitations of the method in both frequency and car airspeed are identified.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Architecture and Operation of the HIP7010 J1850 Byte-Level Interface Circuit

1995-02-01
950035
As a cost effective solution to making microcontroller based systems “J1850[1] aware”, a peripheral device (the HIP7010) was developed to extend the capabilities of standard microcontrollers. From the perspective of the Host, the peripheral device handles J1850 messages as a series of bytes (similar in concept to a universal asynchronous receiver/transmitter [UART]). The architecture of the HIP7010 is discussed. The design of the J1850 interface, state machine, status/control blocks, cyclical redundancy check (CRC) hardware, host interface, and fail-safe features are detailed. Illustrations are provided of: Host/HIP7010 interfacing; message transmission and reception; error handling; and In-Frame Response (IFR) generation.
Technical Paper

Assessing Design Concepts for NVH Using HYFEX (Hybrid Finite Element/Experimental) Modeling

1995-05-01
951249
This paper outlines several methodologies which use finite element and experimental models to predict vehicle NVH responses. Trimmed body experimental modal subsystem models are incorporated into the finite element system model to evaluate engine mounting systems for low frequency vibration problems. Higher frequency noise issues related to road input are evaluated using experimentally derived acoustic transfer functions combined with finite element subsystem model responses. Specific examples of system models built to simulate idle shake and road noise are given. Applications to engine mounting, suspension design, and body structure criteria are discussed.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

CHRYSLER TORSION-AIRE SUSPENSION Across The Board

1958-01-01
580031
IN 1951 Chrysler Corp. began working on a new torsion suspension. In this paper the authors describe details of the development and design of the suspension, now available on 1957 cars. The authors claim the Torsion-Aire suspension has the following advantages: reduced highspeed float, boulevard harshness, impact harshness, road noise, body roll, nose dive, and acceleration squat; better directional stability and cornering ability; fewer lubrication points; and a better balanced ride. The main feature of the front suspension is the use of torsion bars. One of the principal advantages of torsion bars is their weight: 10 lb as compared to 15.8 lb for a 1956 production coil spring.
Technical Paper

Can the k-ε Model Withstand the Challenges Posed by Complex Industrial Flows?

1997-04-08
971516
The purpose of this paper is to present numerical solution for three-dimensional flow about rotating short cylinders using the computer program AIRFLO3D. The flow Reynolds number was kept at 106 for all computations. The drag forces on the cylinder were obtained for different rotational speeds. Predictions were obtained for both an isolated cylinder and a cylinder on a moving ground. The standard k-ε model was employed to model the turbulence. Computed drag coefficients agreed well with the previous experimental data up to a spin ratio (=rω/V) of 1.5.
Technical Paper

Changes in Reliability During the Design and Development Process of a Vehicle's Electrical/Electronic Systems

1995-02-01
950826
The changes in reliability of the Electrical/Electronic Systems of a vehicle-line during its early design and development engineering processes have been studied. A computerized vehicle failure tracking system was used to provide results from several stages of early development vehicle testing at the proving grounds. The data were analyzed using a software program that assumes that failures in a repairable system, such as a car, occur as a nonhomogeneous Poisson process. Results suggest that, under normal circumstances, a significant and quantitative improvement in reliability is achievable as the system or component design progresses through the early design and development processes. This also provides a means of predicting future system(s) reliability when the system(s) is in production.
Technical Paper

Chrysler 3.5 Liter V-6 Engine

1993-03-01
930875
A new 3.5 liter, 60 degrees V6 engine has been designed specifically for Chrysler's 1993 MY line of mid-size sedans - Dodge Intrepid, Eagle Vision, Chrysler Concorde and New Yorker. This new engine features many new components for enchanced performance. The cylinder head has a single overhead cam, four valve-per - cylinder design. The intake system is a cross-flow design equipped with dual throttle bodies, and the manifold also incorporates a vacuum operated tuning valve that increases the mid-range torque of the engine. A windage tray is used on every engine to reduce drag on the rotating components within the crankcase. Dual knock sensors (one per cylinder bank) are used to take advantage of the aggressive spark advance and high compression ratio. The engine also utilizes a plastic, helical, water pump impeller that contributes to low parasitic power losses. The engine incorporates many components and features to ensure durability.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

Chrysler Microprocessor Spark Advance Control

1978-02-01
780117
Electronics suitable for engine control applications has steadily evolved from analog control systems to microprocessor based designs. The change in technology required in switching from analog to microprocessors has required sensor development, new analog to digital conversion techniques, and development of custom input/output circuits suitable for automotive applications. By proper design of the microcomputer system, an engine control unit can be developed that is cost effective compared to conventional analog circuit techniques while providing additional flexibility. The primary limitation of a digital approach is the long lead time required to change the ROM pattern. This lead time can be reduced by combining PROM and ROM in the same system.
Technical Paper

Considerations Affecting the Life of Automotive Camshafts and Tappets

1956-01-01
560015
WORK done in a development program relative to camshafts and tappets in the design of the Chrysler overhead-valve V-8 engine is described. The types of failure encountered are categorized as wear, scuffing, and fatigue. An accelerated test procedure was designed to promote early cam-tappet failures, and the development work was predicated upon the results obtained therefrom. Among the variables affecting the failure conditions, major emphasis was placed on material development. Specifically, the greater amount of time was spent in determining the optimum tappet material, while some time was devoted to the camshaft material. A combination of adjusted chemical composition and heat-treatment of hardenable cast iron for camshaft and tappets provided the best solution to the failure problems.
Technical Paper

Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engines

1995-10-01
952402
A cycle-by-cycle analysis of HC emissions from each cylinder of a four-stroke V-6, 3.3 L production engine was made during cold start. The HC emissions were measured in the exhaust port using a high frequency flame ionization detector (FID). The effect of the initial startup position of the piston and valves in the cycle on combustion and HC emissions from each cylinder was examined. The mass of fuel injected, burned and emitted was calculated for each cycle. The equivalence ratio of the charge in the firing cycles was determined. The analysis covered the first 120 cycles and included the effect of engine transients on HC emissions.
Technical Paper

Design Features of the JUNKERS 211B AIRCRAFT ENGINE

1942-01-01
420123
THE Junkers 211B engine follows the usual German practice of very large displacements and conservative mean effective pressures and rotative speeds. However, the relative light weight per unit of displacement results in a net weight per horsepower that is not far above its competitors. Fully automatic devices which control propeller speed, manifold pressure, mixture ratio, spark advance, and supercharger gear ratio follow the German policy of removing all possible distractions from the pilot. This is one of three large liquid-cooled engines known to be produced in quantity in Germany; it powers an impressive percentage of the Luftwaffe. While of external appearance and displacement that resemble the Daimler-Benz DB-601 engine, the fundamental construction, detail design practice, and metallurgy of the Junkers 211B are surprisingly different.
Technical Paper

Development Highlights and Unique Features of New Chrysler V-8 Engine

1951-01-01
510196
THE design and development of the new valve-in-head V-8 Chrysler engine of 7.5 compression ratio are described here. Among the features discussed by the authors are: the hemispherical combustion chamber, V-8 cylinder arrangement, double-breaker distributor, “thermal flywheel” on automatic choke, and exhaust-heated and water-jacketed throttle bodies. The hemispherical combustion chamber was adopted after it had displayed excellent volumetric and indicated thermal efficiencies, and an ability to maintain these high efficiencies in service. The high volumetric efficiency, for example, is considered to be due to such design features as valves not crowded together, nor surrounded closely by the combustion-chamber walls. They are thereby fully effective in the flow of the fuel-air mixture and the exhaust gases. The authors also present performance data for this engine, which, at full throttle, develops 180 hp at 4000 rpm and 312 ft-lb of torque at 2000 rpm.
Technical Paper

Digital Recording of Vehicle Crash Data

1981-06-01
810810
This paper discusses the development and implementation of a 16 channel data acquisition system for high “G” impact testing which includes a self-contained, on-board data acquisition unit, a programmer-exerciser and debriefing subsystems. The microprocessor controlled, on-board unit contains all signal conditioning, A/D conversion hardware and logic to store 4K 12 bit samples of data per channel. This unit will debrief into an oscilloscope, a desk-top computer or a large disk-based minicomputer system. Advantages over previous systems include the elimination of costly hardware (such as umbilical cables and recorders), and a reduction in pre-test preparation and data processing time.
Technical Paper

Effect of Valve-Cam Ramps on Valve Train Dynamics

1999-03-01
1999-01-0801
Testing of an OHC valve train with hydraulic lash adjuster in which the valve displacements, velocities and accelerations were measured and analyzed in both time and frequency domains, coupled with analysis of the frequency content of the valve acceleration function and its ramps, show that traditional designs of the opening and closing ramps used on some IC engine valve cams can exacerbate vibration in the follower system causing higher levels of spring surge and noise. Suggestions are made for improvement to the design of the beginning and ending transitions of valve motion which can potentially reduce dynamic oscillation and vibration in the follower train.
X