Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

The Reduction of Diesel Engine Emissions by Using the Oxidation Catalysts of Japan Diesel 13 Mode Cycle

1999-03-01
1999-01-0471
To reduce emissions from diesel engines, the effects of oxidation catalysts on the emissions reductions were studied. The effectiveness of several oxidation catalysts on both the regulated and unregulated emissions was evaluated. The oxidation activity of the catalysts was varied by changing Pt loading. The regulated emissions include particulate (PM), hydrocarbon (HC), and carbon monoxide (CO), and the unregulated emissions include benzene, formaldehyde, acetaldehyde, and benzo[a]pyrene (B[a]P). An 8 litter, turbocharged and aftercooled diesel engine was operated under the Japan Diesel 13 (D13) mode cycle for the evaluations. As the first step, evaluations were conducted with a commercially available JIS #2 diesel fuel (0.046 wt% sulfur). All the regulated and unregulated emissions except PM were reduced as the Pt loading (i.e. oxidation activity) increased. However, PM emissions were increased by the generation of sulfate when the Pt loading exceeded 0.2 g/l.
Technical Paper

The IP Filter, a DOC-Integrated DPF, for an Advanced PM Aftertreatment System (2): An Evaluation of Fundamental Performance

2007-04-16
2007-01-0654
DPR consists of a multiple fuel-injection system, an electronic engine control unit, and a DPR Cleaner. The DPR cleaner is one assembly unit consisting of a DOC, a catalyzed DPF, and an exhaust silencer. Thus, DPR is a system developed to achieve healthy operation of a DPF with active regeneration regardless of engine operating conditions. The IP Filter was developed to improve the DPR cleaner by reducing the size of the unit and shortening the regeneration time. Both the DOC and DPF are integrated into one unit structure. The IP Filter has open-ended cells on the front face unlike a conventional wall-flow DPF. Instead, the plugs are positioned at the interface between the DOC and DPF. On the rear face of the IP Filter, plugs are installed at the same positions as those of a conventional DPF. The DOC substrate of the IP Filter is made of highly porous, straight honeycomb, the same as that of DPF.
Technical Paper

The Hino E13C: A Heavy-Duty Diesel Engine Developed for Extremely Low Emissions and Superior Fuel Economy

2004-03-08
2004-01-1312
The Hino E13C was developed for heavy-duty truck application to meet Japan's 2003 NOx and 2005 particulate emissions standards simultaneously with significant fuel economy improvement. A combined EGR system consisting of an external EGR system with a highly efficient EGR cooler and an internal EGR system with an electronically controlled valve actuation device was newly developed to reduce NOx emissions for all operating conditions without requiring a larger engine coolant radiator. A Hino-developed DPR was installed to achieve extremely low particulate emissions at the tail pipe. Increased strength of engine structural components and a ductile cast iron piston enabled high BMEP operation at lower engine speeds and reductions of both engine size and weight. This paper describes key technologies developed for the E13C as well as the development results.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Technical Paper

State-of-the-Art; Hino High Boosted Diesel Engine

1993-11-01
931867
In the Japanese heavy duty truck market, demands of improved fuel economy and lighter vehicles to increase load capacity, and further improvements in emissions are constantly increasing. To satisfy these requirements, basically a smaller sized and higher boosted diesel engine is effective, because such an engine has a compact size and light weight, and shows improved fuel consumption due to a relatively lower frictional loss. On the basis of this concept Hino introduced the original EP100 in 1981 as the first Japanese turbocharged and air to air charge-cooled engine. Since then Hino has made many efforts to improve the engines and develop new technologies.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

Optimum Design of Defroster Nozzle

1992-02-01
920167
Time-consuming experiments have heretofore been required for the development of defroster nozzles. To solve this problem, the authors have quantitatively correlated configuration factors for defroster nozzles and air flow distribution through experiments with simplified models and multiple-regression analysis. Using this approach, it has become possible to derive defrosting patterns from defroster nozzle configuration factors in the design phase.
Technical Paper

Noise-Generating Mechanism and Noise Reduction of Reciprocating Air Compressor for Heavy Duty Vehicles

2007-05-15
2007-01-2374
The noise-generating mechanism of a reciprocating air compressor for heavy duty vehicles during idling was investigated. It was elucidated that the gear rattling noise of the air compressor drive gear train caused by the negative value of the air compressor drive torque was a major noise source. To completely suppress the gear rattling phenomenon, a new loading device with an air cylinder that cancels the negative value of the air compressor drive torque was fabricated. When the loading device was worked, the impulsive sound level was reduced to 10 dB(A). It was found that the impulsive sound level during gear rattling is closely related to the difference in gear teeth velocity between the crankshaft gear and the air compressor drive gear, as one of the characteristics that are needed to obtain a guide for carrying out estimations in the calculation simulation.
Technical Paper

New Medium Duty Truck Model “HINO FA14 Series” for the U.S. Market

1988-10-01
881852
Hino Motors is about to launch a new truck model FA as a family product of the model FB class 5 category trucks which have been sold since 1986, Model FA, a class 3 category cab-over-engine truck has a GVW of 13,500 Lbs. and is powered by a 3.8 liter direct injection turbocharged diesel engine which produces 125 HP in conformity with federal exhaust gas emission regulations for 50 states. The new truck was designed and developed to satisfy several principal design objectives such as excellent maneuverability, driving comfort, superior fuel economy as well as sufficient reliability and durability within the simplest possible structure. This paper describes its design objectives, features focusing on cab and engine and technologies devoted to the development.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore

2014-04-01
2014-01-1661
Reducing friction between the piston ring and cylinder is an effective way of meeting the demand for lower fuel consumption in vehicle engines. To that effect, the authors have proposed a new and efficient friction reduction treatment for the cylinder. At first glance, this treatment seems similar to typical microtexture treatments, but it is built on a different approach. Through a rig tester, it was confirmed that optimizing the shape of the dimples and the treatment area for the cylinder improves FMEP between the piston ring and the cylinder liner by 17%. This report presents an analysis of the test results to explain the mechanism by which this effect is achieved. Fuel consumption was measured in an actual engine, and a maximum fuel consumption improvement of 3.2% was confirmed after conversion to the Japanese heavy duty vehicle fuel economy standards (Category T2). Lubricating oil consumption, blow-by and durability were also examined.
Technical Paper

Improvement of Van Type Truck Aerodynamics

1987-11-08
871237
To reduce the vehicle fuel consumption at high speed, it is very effective to minimize the aerodynamic resistance of the vehicle, which forms most of the vehicle running resistance at high speed. This paper presents a reduction of the aerodynamic resistance of van type truck through the wind tunnel tests using 1/5 scaled model. Firstly, the aerodynamically desirable cab shape for cargo type truck is investigated by changing main cab shape factors such as corner curvatures. Secondly, several effective attachments for Van type truck are investigated, and lastly, the effect of these aerodynamic improvements on the fuel consumption are clearified by vehicle running test.
Technical Paper

Improvement of Low-Temperature Performance of The NOx Reduction Efficiency on the Urea-SCR Catalysts

2013-04-08
2013-01-1076
Diesel engine has a good fuel economy and high durability and used widely for power source such as heavy duty in the world. On the other hand, it is required to reduce NOx (Nitrogen Oxides) and PM (Particulate Matter) emissions further from diesel exhaust gases to preserve atmosphere. The urea-SCR (Selective Catalytic Reduction) system is the most promising measures to reduce NOx emissions. DPF (Diesel Particulate Filter) system is commercialized for PM reduction. However, in case that a vehicle has a slow speed as an urban area driving, a diesel exhaust temperature is too low to activate SCR catalyst for NOx reduction in diesel emissions. Moreover, the diesel exhaust temperature becomes lower as a future engine has less fuel consumption. The purpose of this study is reduction of NOx emission from a heavy-duty diesel engine using the Urea SCR system at the low temperature.
Technical Paper

Impacts on Engine Oil Performance by the Use of Waste Cooking Oil as Diesel Fuel

2011-08-30
2011-01-2115
Technical impacts on engine oil performance by the use of waste cooking oil as bio-diesel fuel (BDF) are not well understood while the industry has made significant progress in studies on quality specifications and infrastructure. The authors, who consist of a consortium organized by Japan Lubricating Oil Society (JALOS), examined technical effects of waste cooking oil as BDF on engine oil performance such as wear and high temperature corrosion using vehicle fleets and bench tests to identify technical issues of engine oil meeting the use of BDF. The study brings fundamental information about technical impacts of BDF on engine oils.
X