Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

1990-09-01
901712
Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
Technical Paper

Smooth Gear Shift Control Technology for Clutch-to-Clutch Shifting

1999-03-01
1999-01-1054
An automatic transmission without a one-way clutch for a small sized, light weight automatic transmission is presented. The factor of torque fluctuation occurrence during shifting of the transmission increases so that the shifting is executed by controlling two wet clutches electronically in place of the one-way clutch and the wet clutch. Therefore, it is necessary to develop a new smooth gear shift control technology for clutch-to-clutch shifting on an automatic transmission without a one-way clutch. The control technology has desirable clutch-to-clutch shift control, learning control and robust control which apply to accurate signals obtained by an observation method. Smooth shifts during clutch-to-clutch shifting can be realized by recognizing clutch change-over time using a calculated acceleration and an input/output speed ratio of the transmission.
Technical Paper

Mixture Formation of Fuel Injection Systems in Gasoline Engines

1988-02-01
880558
Mixture formation technology for gasoline engine multipoint fuel injection systems has been investigated. The fuel injector's spray, the volatility of droplets floating in the air flow, the movement of droplets around the intake valve's upper surface, the volatility of droplets on heated surfaces, and the process of atomizing droplets in the intake valve air flow was analyzed. Droplet diameters and spray patterns for good mixture formation without liquid film in cylinders have been clarified. When sequential injection is used for better responsiveness in fuel injection systems, engine performance may be reduced through increased HC emissions in some conditions. Reducing the diameter of spray droplets and preventing fuel from concentrating in the intake valve promotes vaporization, reduces fuel concentration on cylinder walls, and prevents reductions in engine performance.
Technical Paper

Development of Smooth Shift Control System with Output Torque Estimation

1995-02-01
950900
Most automatic transmissions are controlled in compliance with a predetermined program. Transient control during gear shift is also carried out according to a predetermined process. In this method a lot of labor is required to tune data tables. So we developed a tuning free system by feedback control using torque estimation technology and the experimental result is reported. Torque fluctuation during shift is detected and fed back to compare the torque reference, which is generated from the estimated torque itself. The engine torque is decreased by means of retarding the ignition spark advance, according to the comparison deviation. As a consequence of the feedback, the transient torque control is carried out without any tuning trouble, and better than usual torque fluctuation is obtained.
X