Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Stability Analysis of Engine Revolution by a Chassis and Powertrain Dynamics Simulator

This paper discusses causes and the mechanism of surging, back and forth chassis oscillation which occurs in cars with electronically controlled multi-point gasoline injection systems. This occurs during sharp acceleration, engine braking deceleration, and low speed coasting, at rather low ratio gear positions. We conclude that the mechanism of surging is parametric coupled oscillation. This conclusion is based on experimental data analysts and parameter sensitivity analysis using a chassis and engine dynamics simulator. The elements of parametric coupled oscillation are: a forcing system composed of engine control systems, engine and power transmission systems; a resonance system composed of axle and frame-body translation systems; a feedback system composed of axle translation systems and wheel revolution systems.
Technical Paper

Engine Knock Detection Using Multi-Spectrum Method

High engine load and over-heated engine cylinder are the main causes of engine knock. When knock occurs in an engine, vibrations composed of several specific resonant frequencies occur. Some of these resonant frequencies are missed stochastically because specific resonant frequencies are caused by different resonant vibration modes in an engine cylinder. However, a conventional knock detector can only measure a fixed resonant frequency using a band-pass filter. This paper presents a multi-spectrum method which greatly improves knock detection accuracy by detecting the knock resonance frequencies from several specific vibration frequencies. Through overcoming the random occurrences of knock resonant frequencies by selecting specific frequencies, knock detection accuracy can be greatly improved. We studied a high precision knock detection method using real-time frequency analysis and a piezoelectric accelerometer on a V-6 engine.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.