Refine Your Search

Topic

Author

Search Results

Technical Paper

Variation in Corrosion Resistance of Trivalent Chromate Coating Depending on Type of Zinc Plating Bath

2006-04-03
2006-01-1671
Trivalent chromate coating is replacing the conventional hexavalent chromate coating applied on zinc plating. Zinc plating uses one of three types of plating baths (zincate, cyanide and chloride) according to the characteristics required of subject parts. It has been recognized that trivalent chromate coating provides different corrosion resistance depending on the type of zinc plating bath used. Zinc plating with chromate coating were analyzed to clarify the cause of the corrosion resistance variation with the type of zinc plating bath. It has been revealed that the chromate coating thickness and the condition of top SiO2 layer vary with the type of zinc plating bath, resulting in corrosion resistance variation.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

The application of the damage & fracture material model to crashworthiness evaluations for Aluminum cars.

2003-10-27
2003-01-2776
In an evaluation of crashworthiness for the cars made of aluminum alloys, the evaluation considering fracture phenomenon comes to be needed because conventional aluminum alloys have low fracture strain (10-20%). In case of the development of a B-Pillar made by die cast, if crack occurrence, furthermore, separation of a part can be estimated by using CAE in crashworthiness evaluations, we can reduce the number of prototype makings and the cost of development using expensive dies. Therefore, we performed crashworthiness evaluations by CAE using some sort of a damage & fracture material model. It is known as “Orthotropic damage & fracture model”.
Technical Paper

The New RWD 6 Speed Automatic Transmission for SUV and Truck

2016-04-05
2016-01-1097
Aisin AW (AW) and Toyota Motor Corporation (TMC) have developed a new RWD 6 speed automatic transmission, AWR6B45(AC60), suitable for SUV’s and LDT’s in the worldwide market, not only for North America but also for other countries including emerging nations. This 6 speed automatic transmission has achieved low cost, equivalent to AW and TMCs’ current 5 speed automatic transmission, while realizing improvement in both fuel economy and driving performance against current in-house 5-speed automatic transmissions, in addition to satisfying both toughness against various usage and light weight/compactness. They are accomplished by using a compact gear train structure, the latest efficiency improvement technologies, and a high-response, compact hydraulic control system. In addition, the compactness of this 6 speed automatic transmission enables it to replace current 4 speed and 5 speed automatic transmissions for various engine applications.
Technical Paper

Study of Plastic Plating Using Highly Concentrated Ozonized Water Pretreatment

2005-04-11
2005-01-0618
In order to achieve good adhesive properties, typical decorative plastic plating technology uses a chromic acid process that creates an anchor effect. Due to environmental concerns with hexavalent chromium, there is a need to find alternative processes. Pretreatment using highly concentrated ozonized water was investigated as a novel approach to achieving this goal. In the conventional chromic acid process, strong adhesion between plating membranes is achieved by roughing the ABS (acrylonitrile-butadiene-styrene) resin surface by approximately 1 um. On the other hand, the highly concentrated ozonized water process achieves good adhesion with a smooth resin by changing the resin from ABS to ASA (acrylate-styrene-acrylonitrile). It was discovered that the difference in this strength of adhesion was the difference in resin surface strength (existence of deterioration or otherwise).
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

ST-Lib: A Library for Specifying and Classifying Model Behaviors

2016-04-05
2016-01-0621
Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
Technical Paper

Research of Fuel Components to Enhance Engine Thermal Efficiency Part I: Concepts for Fuel Molecule Candidate

2019-12-19
2019-01-2255
As part of efforts to address climate change and improve energy security, researchers have improved the thermal efficiency of engines by expanding the lean combustion limit. To further expand the lean combustion limit, the authors focused not only on engine technology but the chemical reactivity of various fuel molecules. Furan and anisole were among the fuel molecules selected, based on the idea that promising candidates should enhance the flame propagation speed and have good knocking resistance. Engine testing showed that the lean limit can be expanded by using fuels with the right molecular structures, resulting in higher thermal efficiency.
Technical Paper

Research in Aluminum Matrix Composites for Improvement in Damping Capacity

2005-04-11
2005-01-1389
We have tried to improve damping capacity of an aluminum alloy by means of dispersing ceramic particles (low damping SiC and high damping NdNbO4) of different sizes and volume fractions in the aluminum alloy by powder metallurgy. It is shown that the damping capacity is increased in every case accompanying an increase of Young's modulus. It is also shown that the intrinsic damping capacity of dispersed particles does not play a role in improving the damping capacity. The increase of the damping capacity seems to be attributed to dislocations breakaway, interaction of fine particles and dislocations, and relaxation of interface between ceramic particles and aluminum matrix.
Technical Paper

Reduction of Reaction Mechanism for n-Tridecane Based on Knowledge of Detailed Reaction Paths

2016-10-17
2016-01-2238
n-Tridecane is a low boiling point component of gas oil, and has been used as a single-component fuel for diesel spray and combustion experiments. However, no reduced chemical kinetic mechanisms for n-tridecane have been presented for three-dimensional modeling. A detailed mechanism developed by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), contains 1493 chemical species and 3641 reactions. Reaction paths during ignition process for n-tridecane in air computed using the detailed mechanism, were analyzed with the equivalence ratio of 0.75 and the initial temperatures of 650 K, 850 K, and 1100 K, which are located in the cool-flame dominant, negative-temperature coefficient, and blue-flame dominant regions, respectively.
Technical Paper

Nature of Fundamental Parameters Related to Engine Combustion for a Wide Range of Oxygenated Fuels

2002-10-21
2002-01-2853
The fundamental parameters related to engine combustion and performances, such as, heating value, theoretical air-fuel ratio, adiabatic flame temperature, carbon dioxide (CO2), and nitric oxide (NO) emissions, specific heat and engine thermal efficiency were investigated with computations for a wide range of oxygenated fuels. The computed results showed that almost all of the above combustion-related parameters are closely related to oxygen content in the fuels regardless of the kinds or chemical structures of oxygenated fuels. An interesting finding was that with the increase in oxygen content in the fuels NO emission decreased linearly, and the engine thermal efficiency was almost unchanged below oxygen content of 30 wt-% but gradually decreased above 30 wt-%.
Technical Paper

Method of Improving Side Impact Protection Performance by Induction Hardening of Body Reinforcement Compatibility Between Safety and Weight Reduction in Body Engineering

1998-02-23
980550
A technique for induction-hardening local portions of vehicle body reinforcements press-formed of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement. Owing to this method, the weight of body reinforcements can be decreased. New induction-hardening systems have also been developed for the present technique. One is an apparatus which allows induction-hardening a part with a three-dimensionally curved surface. Another is a straightening quench technique used to retain the same dimensional accuracy as the original press-formed part.
Technical Paper

Metallic Powder Coating for Aluminum Wheels

2004-03-08
2004-01-1671
From the viewpoint of measures for environmental issues, the amount of solvents in paint for aluminum wheels needs to be minimized. Environmentally friendly powder coatings have been used widely for primer coating and clear coating, but there is no precedent for its use for base coating. This time, we optimized the condition of surface treatment of pigment and hardening behavior of constituent resin in the melting process and succeeded in developing a metallic powder coating for aluminum wheels that fulfills the appearance and the quality requirements of aluminum wheels.
Technical Paper

Joining Technologies for Aluminum Body-Improvement of Self-piercing Riveting

2003-10-27
2003-01-2788
The experimental research vehicle ES3 body was realized by using various aluminum-joining technologies: MIG welding, laser welding, self-piercing riveting. These technologies were applied selectively to make full use of their individual characteristics, according to the body structure and joined materials. Of these technologies, self-piercing riveting is advantageous in several respects. Aiming to expand the application range of riveting technology, we developed a die that prevents cracks in joining aluminum casting, and a method to improve rivet driving in thick, multi-pile portion. We further studied the feasibility of aluminum rivets. This paper outlines the ES3 body structure and it's joining technologies used and introduces the further improvements we developed concerning self-piercing riveting.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Improvement of Adhesion Properties between Epoxy Resin and Primer and between Primer and Ni Plating in Hybrid Vehicle Power Semiconductor Module under High Temperature Conditions

2016-04-05
2016-01-0500
In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
Journal Article

Identification of Vortical Structure that Drastically Worsens Aerodynamic Drag on a 2-Box Vehicle using Large-scale Simulations

2016-04-05
2016-01-1585
It is important to reduce aerodynamic drag for reducing fuel consumption. Conventionally reduction of aerodynamic drag has been carried out by shape optimization of each part of a vehicle based on the investigations of the time-averaged flows around the vehicle. However, the general tendency of drag reduction has been saturated recently and it is required to develop a new flow-control technique to achieve further reduction in aerodynamic drag. We therefore focus on the unsteadiness of the flow around a vehicle to achieve it because the aerodynamic drag of a vehicle fluctuates over time due to repetitions of generation, growth, merging and disappearance of various sizes of vortices around it. These vortices are formed by flow separations, for which the longitudinal coherent vortices inside turbulent boundary layers on vehicle surfaces are presumably playing an important role.
X