Refine Your Search



Search Results

Technical Paper

Waza (Skilled Craftsmanship) that Created RA272 Exhaust Pipe used in Formula 1 Race in 1960's

This study attempted to faithfully reproduce and scientifically analyze the process of formation of the exhaust pipe of the winning RA272 engine used in Formula One in the 1960's, using the waza (skills) employed in its fashioning, which have been handed down by its makers. This analysis showed that the manual bending method, used to create the RA272 exhaust pipe, which was filled with sand and bent while being flame-heated, without the use of figures or molds, was superior to the mechanical bending method of that time, from the standpoint of short-term period of production. We have determined that the pipe displays that the microstructure of the material remains stable, even at exhaust temperatures of 700°C to 900°C, and that useful information on the pipe's shape stability and mechanical strength has been provided.
Technical Paper

Validation of Turbulent Combustion and Knocking Simulation in Spark-Ignition Engines Using Reduced Chemical Kinetics

Downsizing or higher compression ratio of SI engines is an appropriate way to achieve considerable improvements of part load fuel efficiency. As the compression ratio directly impacts the engine cycle thermal efficiency, it is important to increase the compression ratio in order to reduce the specific fuel consumption. However, when operating a highly boosted / downsized SI engine at full load, the actual combustion process deviates strongly from the ideal Otto cycle due to the increased effective loads requiring ignition timing delay to suppress abnormal combustion phenomena such as engine knocking. This means that for an optimal design of an SI engine between balances must be found between part load and full load operation. If the knocking characteristic can be accurately predicted beforehand when designing the combustion chamber, a reduction of design time and /or an increase in development efficiency would be possible.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Technical Paper

The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine

The reduction of fuel consumption is of great importance to automobile manufacturers. As a prospective means to achieve fuel economy, lean burn is being investigated at various research organizations and automobile manufacturers and a number of studies on lean-burn technology have been reported to this date. This paper describes the development of a four-valve lean-burn engine; especially the improvement of the combustion, the development of an engine management system, and the achievement of vehicle test results. Major themes discussed in this paper are (1) the improvement of brake-specific fuel consumption under partial load conditions and the achievement of high output power by adopting an optimized swirl ratio and a variable-swirl system with a specially designed variable valve timing and lift mechanism, (2) the development of an air-fuel ratio control system, (3) the improvement of fuel economy as a vehicle and (4) an approach to satisfy the NOx emission standard.
Technical Paper

Study on Variable Valve Timing System Using Electromagnetic Mechanism

In recent years, increasing attention has been paid to a non-throttling technology that is expected to contribute to a reduction in fuel consumption. This paper describes a study on the technology behind the electromagnetic variable valve timing mechanism (electromagnetic valve mechanism). The electromagnetic valve mechanism ensures highly efficient and stable valve opening/closing control. The detailed information and findings will be described in the main body. In addition, the advantages of the mechanism's application to a homogeneous charge compression ignition engine (HCCI engine) will also be described.
Technical Paper

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For lean-burn diesel engines, since it is not possible to use three-way catalytic converters, reducing NOX emissions is a difficult technical challenge. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows more efficient reduction of NOX than its conventional counterparts. However, an appropriate switching control between lean and rich mixture conditions along with compensation for catalyst deterioration was necessary.
Technical Paper

Study on Engine Management System Using In-cylinder Pressure Sensor Integrated with Spark Plug

There has been strong public demand for reduced hazardous exhaust gas emissions and improved fuel economy for automobile engines. In recent years, a number of innovative solutions that lead to a reduction in fuel consumption rate have been developed, including in-cylinder direct injection and lean burn combustion technologies, as well as an engine utilizing a large volume of exhaust gas recirculation (EGR). Furthermore, a homogeneous charge compression ignition (HCCI) engine is under development for actual application. However, one of the issues common to these technologies is less stable combustion, which causes difficulty in engine management. Additionally, it is now mandatory to provide an onboard diagnosis (OBD) system. This requires manufacturers to develop a technology that allows onboard monitoring and control of the combustion state. This paper reports on an innovative combustion diagnostic method using an in-cylinder pressure sensor.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Study of an Aftertreatment System for HLSI Lean-burn Engine

Lean-burn is an effective means of reducing CO2 emissions. To date, Homogenous Lean Charge Spark Ignition (HLSI) combustion, which lowers emissions of both CO2 and NOx, has been studied. Although HLSI realizes lower emission, it is a major challenge for lean-burn engines to meet SULEV regulations, so we have developed a new aftertreatment system for HLSI engines. It consists of three types of catalysts that have different functions, as well as special engine control methods. As the first stage in achieving SULEV emissions, this study focused on enhancing performance under lean conditions. HLSI engine exhaust gases contain high concentrations of hydrocarbons, including a large amount of paraffin, which are difficult to purify, rather than low concentrations of NOx. Therefore, the key point in low emissions is to purify not only NOx, but also high concentrations of paraffin at the same time.
Technical Paper

Spark Plug Voltage Analysis for Monitoring Combustion in an Internal Combustion Engine

The idea to monitor the combustion in an internal combustion engine and using the obtained data to control combustion in the engine has been around for some time now. There are two well-known methods, although in the capacity of lab experiments, which had been developed under this principle. One features the analysis of combustion pressure and the other features the analysis of ionic currents detected in the combustion gas. Although highly precise analysis can be achieved by the former, there are problems in the installation of sensors for detecting combustion pressure, also in the durability and cost of such sensors. As for the latter, there are also problems in installing sensors for detecting the ionic currents and the reliability of obtained data from such sensors is still questionable.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Resource-conserving, Heat-resistant Ni-based Alloy for Exhaust Valves

Conventionally, the Ni-based superalloys NCF3015 (30Ni-15Cr) and the high nickel content NCF440 (70Ni-19Cr) (with its outstanding wear resistance and corrosion resistance), have been used as engine exhaust valve materials. In recent years, automobile exhaust gases have become hotter because of exhaust gas regulations and enhanced fuel consumption efficiency. Resource conservation and cost reductions also factor into global environmental challenges. To meet these requirements, NCF5015 (50Ni-15Cr), a new resource-conserving, low-cost Ni-based heat-resistant alloy with similar high-temperature strength and wear resistance as NCF440, has been developed. NCF5015's ability to simultaneously provide wear resistance, corrosion resistance and strength when NCF5015 is used with diesel engines was verified and the material was then used in exhaust valves.
Technical Paper

Research on Low-Friction Properties of High Viscosity Index Petroleum Base Stock and Development of Upgraded Engine Oil

High viscosity index(HVI) petroleum base stock, with excellent temperature-viscosity characteristics, oxidation resistance, and low-evaporation properties, offers advantages as the base stock for high fuel economy engine oils, particularly because of its low-friction properties in the boundary and/or “E.H.L (Elastohydrodynamic Lubrication)” area due to its rheological characteristics. This research evaluated HVI base stock's low-friction properties. Upgrading the oil from 5W-30 to 5W-20 was also investigated. The friction properties of the HVI base stock were measured by a unit friction platform. The results show a 28% reduction in friction coefficient compared with the conventional, solvent refined oil, which is attributable to the high-pressure viscosity of the base oil.
Technical Paper

Reduction of Life Cycle CO2 Emissions -The Example of Honda Insight

In order to reduce CO2 emissions from automobiles, a highly fuel-efficient hybrid vehicle, the “Insight”, has been developed at Honda. Life cycle CO2 emissions are compared for the aluminum-bodied Insight, a simulated steel-bodied Insight, and a conventional gasoline vehicle. Life cycle CO2 emission is still dominated by the in-use fuel consumption. However, the contribution of CO2 emission from material use and processing could increase when the vehicle fuel consumption is greatly reduced. The use of recycled aluminum reduces CO2 emission from the aluminum-bodied Insight.
Journal Article

Prediction of Wear Loss of Exhaust Valve Seat of Gasoline Engine Based on Rig Test Result

The purpose of this research was to predict the amount of wear on exhaust valve seats in durability testing of gasoline engines. Through the rig wear test, a prediction formula was constructed with multiple factors as variables. In the rig test, the wear rate was measured in some cases where a number of factors of valve seat wear were within a certain range. Through these tests, sensitivity for each factor was determined from the measured wear data, and then a prediction formula for calculating the amount of wear was constructed with high sensitivity factors. Combining the wear amount calculation formula with the operation mode of the actual engine, the wear amount in that mode can be calculated. The calculated wear amount showed a high correlation with the wear amount measured in bench tests and the wear amount measured in vehicle tests.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Technical Paper

Practical Application of Combustion Simulation using CFD for Small Engine of Two-Wheeled Vehicle

The combustion simulation based on CFD (Computational Fluid Dynamics) was attempted in order to visualize in-cylinder combustion phenomena of a small displacement, high speed four-stroke SI engine for motorcycle applications. To verify the results of the simulation, the steady state flow in a cylinder, the fuel spray behavior and the flame propagation behavior in an actual engine were measured and compared. The results were that an adequate correlation was confirmed in each phenomenon, proving that the CFD was applicable as a means of visualization. As the result of the investigation of the combustion system applying this technique, improvements such as the specific fuel consumption and the extension of the lean combustion zone were attained, assuring effectiveness of this technique for actual engine development. This technique has been applied to the development of the world's first four-stroke 50cm3 PGM-FI (Programmed Fuel Injection) engine.
Technical Paper

New 1.0L I3 Turbocharged Gasoline Direct Injection Engine

To comply with the environmental demands for CO2 reduction without compromising driving performance, a new 1.0 liter I3 turbocharged gasoline direct injection engine has been developed. This engine is the smallest product in the new Honda VTEC TURBO engine series (1), and it is intended to be used in small to medium-sized passenger car category vehicles, enhancing both fuel economy through downsizing, state-of-the-art friction reduction technologies such as electrically controlled variable displacement oil pump and timing belt in oil system, and also driving performance through turbocharging with an electrically controlled waste gate. This developed engine has many features in common with other VTEC TURBO engines such as the 1.5 liter I4 turbocharged engine (2) (3), which has been introduced already into the market.
Technical Paper

Modeling the Sound Source of an Intake and Predicting the Intake Sound Pressure Level for a Motorcycle

In order to accurately estimate the intake sound pressure level, it is important to improve the accuracy of the air cleaner simulation model and precisely estimate the sound source of the intake. It has been confirmed that the modeling accuracy of an air cleaner can be improved by considering the vibro-acoustic coupling. Meanwhile, the sound source of the intake depends not only on the engine specifications, but on the intake system and even the exhaust system design. In this reported example, since it is difficult to estimate the sound source of the intake only by calculation, due to the aforementioned reasons, actual measurements were carried out to define the sound source. The method is such that the sound source is modeled by acoustic impedance and volume velocity in the engine, and the acoustic impedance is measured using an impedance tube. Then, the sound pressure at the intake opening is measured.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.