Refine Your Search




Search Results

Technical Paper

Transmission-Mounted Power Control Unit with High Power Density for Two-Motor Hybrid System

A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
Technical Paper

The Properties of Hybrid Fiber Reinforced Metal and It's Application for Engine Block

The weight-saving requirements for automobiles are important. In order to produce a lighter engine, an aluminum block with cast-iron liners and a hypereutectic aluminum-silicon alloy block have been developed. (1)*, (2), (3), (4), (5), (6) We developed a new aluminum engine block which has the cylinder bore surface structure reinforced with short ceramic fiber. We also established technology suitable for mass-production including a fiber preform process and a non-destructive inspection method. In this paper, the optimum properties and production technology of MMC engine blocks are introduced. A portion of the paper is dedicated to the results of a comparison study between a new light-weight aluminum engine block, a hypereutectic aluminum-silicon engine block and an aluminum engine block with cast-iron liners.
Technical Paper

Temperature Prediction of Actual Contact Portion of the Metal Belt CVT

In a previous study by the authors, austenite (γ phase) formed on the topmost of pulleys after long term operation of continuously variable transmission (CVT) [1]. In general, martensite arising from heat treatment forms on the surface of pulleys and gears. Therefore, the sliding surface has a body-centered cubic (BCC) metal structure, and transformation into and existence of austenite (γ phase) is difficult unless there is a thermal history exceeding the eutectoid point. For the verification of that possibility, it was crucial to obtain temperature variation on the sliding surface. The major problem for such measurements was rotation of parts inside an operating CVT. In this study, uniquely developed measurement system enabled non-contact temperature measurement near the contact portion. Results were substituted to heat conduction equation to predict the temperature at the exact contact portion.
Technical Paper

Technology to Enhance Deep-Drawability by Strain Dispersion Using Stress Relaxation Phenomenon

When the strain is temporarily stopped during tensile testing of a metal, a stress relaxation phenomenon is known to occur whereby the stress diminishes with the passage of time. This phenomenon has been explained as the change of elastic strain into plastic strain. A technique was devised for deliberately causing strain dispersion to occur by applying the stress relaxation phenomenon during stamping. A new step motion that pause the die during forming was devised; it succeeded in modifying the deep-draw forming limit by a maximum of 40%. This new technique was verified through tensile and actual stamping tests. It was confirmed that the use of step motion causes the strain to disperse, thereby modifying the deep draw forming limit. The degree to which the forming limit is modified is dependent on the stop time and the temperature. Step motion technology increases the stampability of high-strength, forming-resistant materials and allows for expanded application of these materials.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Journal Article

Study of the Mechanism of Accessory Drive Belt Noise

The mechanism of noise production in engine accessory drive belts was discussed. Applying geometric considerations to the transversal vibration of the belt, which is one cause of belt noise, the research showed that vibration of the belt is affected by fluctuations in the rotational speed of the crankshaft, and that the amplitude of the vibrations fluctuates cyclically. The cycle of this amplitude fluctuation is synchronous with engine speed, and for a 3-cylinder gasoline engine, its frequency is the (1.5*n)th engine rotation order. The spectrum pattern of belt vibration therefore shows components of the natural frequency±(1.5*n)th orders. The research demonstrated that at engine speeds at which the natural frequency±(1.5*n)th orders and the (1.5*n)th order frequencies, the engine excitation orders, are identical, multiple engine orders excite resonance in the belt, producing a high degree of belt vibration.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

Study of High Power Dynamic Charging System

The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Journal Article

Strength Analysis of a Cylinder Head Gasket Using Computer Simulation

The properties sought in a multi-layer steel cylinder head gasket include cylinder pressure sealing and fatigue strength in order for there to be no damage while the engine is in operation. Diesel engines, in particular, have high cylinder pressure and a high axial tension by the cylinder head bolt demanding severe environment to the gaskets. As engine performance is enhanced, there are cases when cracks develop in the gasket plate, necessitating countermeasures. The cause of cracking in a flat center plate, in particular, has not yet been explained, and no method for evaluation had previously existed. Three-dimensional non-linear finite element calculation was therefore performed to verify the cause. First, a static pressurization rig test was used and the amount of strain was measured to confirm the validity of the calculations. Then the same method of calculation was used to verify the distribution of strain, with a focus on the plate position.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Secondary O2 Feedback Using Prediction and Identification Type Sliding Mode Control

Recently, much research has been carried out on secondary O2 feedback which performs control based on the output from a secondary O2 sensor (HEGO sensor). In this research it has been found that, regardless of catalyst aging conditions, the HEGO sensor output indicates 0.6 V when the catalyst reduction rate is maintained at the optimum level. Therefore, based on this relationship, we designed an accurate secondary O2 feedback with the aim of reducing emissions by stabilizing the HEGO sensor output to 0.6 V. In order to realize this control, it was necessary to solve the three problems of nonlinear catalyst characteristics, dead time characteristics, and changes in dynamic characteristics due to catalyst aging conditions. Therefore, these problems were solved using the modeling approach of robust control and a new robust adaptive control named Prediction and Identification Type Sliding Mode Control.
Technical Paper

Research Into Surface Improvement for Low Friction Pistons

1 A new surface modification heat treatment technology called Wonder Process Craft which is different from plating and coating, was applied to the skirt section, which is the sliding surface of the piston in an internal combustion engine. This was intended to improve fuel economy and mechanical characteristics by reducing sliding resistance. In the application of solid lubrication, this treatment does not require the usage of binder, which was necessary for conventional coating, leading to the highest level achievable for the low sliding resistance effect inherent of solid lubrication. Since this treatment does not involve any change in significant dimensions, shapes, surface roughness, and so on, applying this treatment is easy. The persistence of the effect, productivity and recyclability of waste and emissions during treatment were also taken into account.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.