Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibrational Analysis Method on High-frequency Electric-drive Motor Noise

2020-04-14
2020-01-0463
When a vehicle is cruising, unpleasant noise in the 4 to 5 KHz high-frequency band can be heard at the center of all seats in the vehicle cabin. In order to specify the source of this noise, the correlation between the noise and airborne noise from the outer surface of the transmission was determined, and transfer path analysis was conducted for the interior of the transmission. The results indicated that the source of the noise was the 0th-order breathing mode specific to the drive motor. To make it possible to predict this at the desk, a vibrational analysis method was proposed for drive motors made up of laminated electrical steel sheets and segment-type coils. Material properties data for the electrical steel sheets and coils was employed in the drive motor vibrational analysis model without change. The shapes of the laminated electrical steel sheets and coils were also accurately modeled.
Journal Article

Vibration Reduction in Motors for the SPORT HYBRID SH-AWD

2015-04-14
2015-01-1206
A new motor has been developed that combines the goals of greater compactness, increased power and a quiet drive. This motor is an interior permanent magnet synchronous motor (IPM motor) that combines an interior permanent magnet rotor and a stator with concentrated windings. In addition, development of the motor focused on the slot combination, the shape of the magnetic circuits and the control method all designed to reduce motor noise and vibration. An 8-pole rotor, 12-slot stator combination was employed, and a gradually enlarged air gap configuration was used in the magnetic circuits. The gradually enlarged air gap brings the centers of the rotor and the stator out of alignment, changing the curvature, and continually changing the amount of air gap as the rotor rotates. The use of the gradually enlarged air gap brings torque degradation to a minimum, and significantly reduces torque fluctuation and iron loss of rotor and stator.
Technical Paper

Trend of Bolts for Use in Automobiles and Development of Class 10.9 Low Carbon Boron Steel Bolt

1997-02-24
970516
There are strong demands for reduced production costs of ordinary bolts, of which a large number are used throughout automobiles. In addition, there are continued demands for higher performance and lower weight in automobiles. For this reason, there is an increasing trend to develop steel for high strength bolts or to adopt the plastic region tightening method. At present, the principal materials used in high strength bolts of class 10.9 are medium carbon alloy steel. When a low carbon boron steel bolt is used as a class 10.9 bolt under high stress, delayed fracture may occur, so that these cannot always be used for the body and chassis applications. The authors have developed a new low carbon boron steel with increased delayed fracture strength on the same order as that of JIS-SCM435 (equivalent to SAE4135) medium carbon alloy steel. Attention was focused principally on decreasing the amounts of phosphorus and sulfur in the steel.
Technical Paper

The Effects on Motorcycle Behavior of the Moment of Inertia of the Crankshaft

1997-02-24
971060
The moment of inertia of the crankshaft cannot be ignored when analyzing the dynamics of a motorcycle. In this research, the tire friction force (calculated by drag and tire side force) was used as an index of the drive performance. The ratio of roll rate and steering torque (here after referred to as a roll rate gain) was used as an index of the cornering performance, and it was analyzed as the influence of the moment of inertia of a crankshaft on the drive performance as well as cornering performance. As a result, the influence on drive performance and cornering performance by the moment of inertia has been found.
Technical Paper

Temperature Prediction of Actual Contact Portion of the Metal Belt CVT

2018-04-03
2018-01-0122
In a previous study by the authors, austenite (γ phase) formed on the topmost of pulleys after long term operation of continuously variable transmission (CVT) [1]. In general, martensite arising from heat treatment forms on the surface of pulleys and gears. Therefore, the sliding surface has a body-centered cubic (BCC) metal structure, and transformation into and existence of austenite (γ phase) is difficult unless there is a thermal history exceeding the eutectoid point. For the verification of that possibility, it was crucial to obtain temperature variation on the sliding surface. The major problem for such measurements was rotation of parts inside an operating CVT. In this study, uniquely developed measurement system enabled non-contact temperature measurement near the contact portion. Results were substituted to heat conduction equation to predict the temperature at the exact contact portion.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Technical Paper

Study of Riding Assist Control Enabling Self-standing in Stationary State

2018-04-03
2018-01-0576
In motorcycles traveling at medium to high speed, roll stability is usually maintained by restoration forces generated by a self-steering effect. However, when the vehicle is stationary or traveling in low speed, sufficient restoring force does not occur because some of the forces, such as centrifugal force, become small. In our study, we aimed at prototyping a motorcycle having roll stability when the vehicle is stationary or at low speed with a steering control for self-standing assist, while maintaining stability properties in medium to high speed. A model was built to represent dynamics of roll motion, which is composed of a fixed point mass located above the vehicle’s center of gravity and another movable point mass below that gravity center. According to the model, when steered, the roll moment direction generated by the shift of the movable point mass becomes the same as the direction generated by the ground contact point shift of the front tire.
Technical Paper

Study of Power Generation Loss Decrease in Small Gas Engine Cogeneration

2008-09-09
2008-32-0044
Power generation systems employed in small gas engine cogeneration were examined to compare losses in the converter, which converts three-phase alternator power to direct current (DC) voltage, and losses in the inverter, which converts power to high-quality alternating current (AC) voltage that can be connected into electric utility power lines. It is a characteristic of alternators that their efficiency and output voltage decline in the heavy load range. It was found, therefore, that step-down methods using thyristors operate in a low-efficiency range in order to provide a satisfactory supply of the targeted DC output voltage. Use of switching regulator methods, on the other hand, can generate the target voltage by regulating a switching device after first storing the alternator output in a choke coil. It was found, therefore, that these use the high-efficiency range of the alternator. The converter was found to have a resulting loss decrease of 19.4 W.
Technical Paper

Structure to Assist in the Prevention of Bimetallic Corrosion of Hybrid Doors

2013-04-08
2013-01-0386
The use of low-density materials in body panels is increasing as a measure to reduce the weight of the vehicle body. Honda has developed an aluminum/steel sheet hybrid door that is more effective in reducing weight than an all-aluminum door. Because aluminum was used in the door skin, bimetallic corrosion at the connection between the aluminum and the steel sheets represented an issue. It was possible that the difference in the electrical potential of the two metals might promote corrosion at the connection between the aluminum door skin and the steel sheet door panel, in particular at the lower edge of the door, where rainwater and other moisture tend to accumulate, with the result that the appeal of the exterior of the door might decline.
Technical Paper

Shifting Mechanisms and Variation of Frictional Coefficients for CVT Using Metal Pushing V-Belts

2000-03-06
2000-01-0840
In order to reveal the shifting mechanisms for CVT using a metal pushing V-belt, three shifting rates were introduced. The belt motion in the pulley groove was also characterized using mean coefficients of friction as parameters, which identify the slippage condition of the belt in the pulley groove. The experimental results showed that one of shifting rates, dR/ds was almost constant in the narrowing pulley regardless of both rotational speed and transmitted torque. Here, R is the belt pitch radius in the pulley and s is the length measured along the belt pitch line. This fact indicates that the shifting is primarily governed by elastic deformation of blocks of the belt. Power transmitting states were also evaluated using a different type of lubricating oil whose nominal coefficient of friction was higher than that for the conventional AT oil. The observed mean coefficients of friction vary due to oil although the basic response of the CVT unchanged.
Technical Paper

Sensitivity Analysis Method of Scatter Factors Based on Cyclic Plastic Zone Size for Fatigue Life of Arc-Welded Joint

2003-10-27
2003-01-2826
Effects of various scatter factors on fatigue strength for arc-welds were studied by fatigue test results and sensitivity analysis using the method of cyclic plastic zone size (ω*). The followings were clarified. First, effects of flank angle could be decided by the sensitivity calculated based on the relation between fatigue life for finite life and flank angle. Second, effects of material could be explained by the sensitivity for which the difference of fatigue strength coefficient for each material was analysed. The results, it was verified that there was no effect in notch specimens and there was effect in smooth specimens. Third, effect of thickness was defined by function of the ratio of thickness.
Technical Paper

Research on Technique for Correction of Running Resistance with Focus on Tire Temperature and Tire Thermal Balance Model

2019-04-02
2019-01-0623
At present, measurements of running resistance are conducted outdoors as a matter of course. Because of this, the ambient temperature at the time of the measurements has a considerable impact on the measurement data. The research discussed in this paper focused on the temperature characteristic of the tires and developed a new correction technique using a special rolling test apparatus. Specifically, using a tire rolling test apparatus that made it possible to vary the ambient temperature, measurements were conducted while varying the levels of factors other than temperature that affect rolling resistance (load, inflation pressure, and speed). Next, a regression analysis was applied to the data for each factor, and coefficients for a relational expression were derived, making it possible to derive a quadratic equation for the tire rolling resistance correction formula.
Technical Paper

Research Into Surface Improvement for Low Friction Pistons

2005-04-11
2005-01-1647
1 A new surface modification heat treatment technology called Wonder Process Craft which is different from plating and coating, was applied to the skirt section, which is the sliding surface of the piston in an internal combustion engine. This was intended to improve fuel economy and mechanical characteristics by reducing sliding resistance. In the application of solid lubrication, this treatment does not require the usage of binder, which was necessary for conventional coating, leading to the highest level achievable for the low sliding resistance effect inherent of solid lubrication. Since this treatment does not involve any change in significant dimensions, shapes, surface roughness, and so on, applying this treatment is easy. The persistence of the effect, productivity and recyclability of waste and emissions during treatment were also taken into account.
Journal Article

Quantitative Representations of Aerodynamic Effects on Handling Response and Flat Ride of Vehicles

2012-04-16
2012-01-0445
The effects of aerodynamic coefficients on handling response and flat ride were quantified. For handling response, the aerodynamic effect was quantified by analysis with linear representation and a two-wheel simulation model, using aerodynamic coefficients obtained from a full scale car wind tunnel. The correlation of aerodynamic coefficients and handling response with driving feel was also ascertained. Aerodynamic yaw moment and side-force were also converted to equivalent front and rear lift to standardize aerodynamic indexes and improve aerodynamic development efficiency. For flat ride, steady and unsteady aerodynamic effects were quantified by analysis with a two-degree-of-freedom mass-spring-damper simulation model and aerodynamic coefficients obtained from a 35% scale model wind tunnel and towing tank test. Unsteady aerodynamic force occurrence mechanism was ascertained by unsteady CFD using dynamic mesh.
Journal Article

Prediction of Friction Drive Limit of Metal V-Belt

2015-04-14
2015-01-1138
When fluctuations in the speed of rotation of the drive pulley are transmitted to the driven pulley via the metal V-belt, the transmitted fluctuations become attenuated as friction force approaches a state of saturation. The research discussed in this paper focused on these fluctuations in the speed of rotation and developed an index for the slip state between the belt and the pulleys. The drive and driven pulleys were regarded as a one-dimensional vibrating system connected by elastic bodies, and changes in the state matrix of the system were focused on. It was determined that when all of the eigenvalues in this state matrix become real numbers, slip speed between the belt and the pulleys increases sharply. A method was proposed of estimating this behavior of the eigenvalues from changes in the speed of rotation of the drive and driven pulleys, and indexing the current slip state.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
Journal Article

Pad Correction Estimation around 5 Belt Wind Tunnel Wheel Belts Using Pressure Tap Measurement and Mathematical Pressure Distribution Model

2022-03-29
2022-01-0902
5 belt wind tunnels are the most common facility to conduct the experimental aerodynamics development for production cars. Among aerodynamic properties, usually drag is the most important development target, but lift force and its front/rear balance is also important for vehicle dynamics. Related to the lift measurement, it is known that the “pad correction”, the correction in the lift measurement values for the undesirable aerodynamic force acting on wheel belt surface around the tire contact patch, must be accounted. Due to the pad correction measurement difficulties, it is common to simply subtract a fixed amount of lift values from measured lift force. However, this method is obviously not perfect as the pad corrections are different for differing vehicle body shapes, aerodynamic configurations, tire sizes and shapes.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
Journal Article

Manufacturing Technology for Hollow Structure Large Aluminum Parts Production by High Pressure Die Casting (HPDC)

2015-04-14
2015-01-1319
When using aluminum for vehicle body parts to reduce weight, the high pressure die casting (HPDC) is widely applied due to its adaptability to thin-wall products, near-net-shape castability, and short casting cycle time. Since a hollow construction is advantageous to increase stiffness of body parts, there has been a need of development of techniques for casting of hollow parts by HPDC. So far, hollow casting by HPDC has been realized for small parts using sand cores. When applying that method to large parts, however, it is necessary to increase filling speed. When the filling speed is increased, the core tends to break. In this project, we have developed a method to estimate changes of pressure distribution when filling molten metal by the casting simulation in order to analyze damages to the core. Through the analysis, we discovered occurrence of impulsive pressure waves.
X