Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Robust Braking/Driving Force Distribution and Active Front Steering Control of Vehicle System with Uncertainty

2011-09-13
2011-01-2145
Uncertainties present a large concern in actual vehicle motion and have a large effect on vehicle system control. We attempt a new robust control design approach for braking/driving force distribution and active front steering of vehicle system with uncertain parameters. The braking/driving force distribution control is equivalently studied as the integral direct yaw moment control. Then the control design is carried out by using a state-space vehicle model with embedded fuzzy uncertainties. By taking the compensated front wheel steering angle and the direct yaw moment as the control inputs, a feedback control that aims to compensate the system uncertainty is proposed. In a quite different angle, we employ fuzzy descriptions of the uncertain parameters. The controlled system performance is deterministic, and the control is not if-then rules-based. Fuzzy descriptions of the uncertain parameters are used to find an optimal control gain.
Technical Paper

Optimization of the Realizable k - ε Turbulence Model Especially for the Simulation of Road Vehicle

2012-04-16
2012-01-0778
Realizable k-ε turbulence model has been used widely for engineering development. In this turbulence model, the default values of empirical coefficients such as C₂, σk and σε are obtained from some particular experiments. They are a good choice for most simulations-though may be not the best choice for simulating the aerodynamic characteristics of road vehicle. In order to improve the accuracy of simulation, a set of new empirical coefficients should be designed especially for simulating the aerodynamic characteristics of road vehicle. These empirical coefficients are found out by DoE (design of experiments) in this paper. Firstly the value range of empirical coefficients is decided by the laws that the aerodynamic force coefficients change with altering of empirical coefficients. Secondly 20 sets of empirical coefficients are obtained randomly by applying optimal Latin Hypercube method in Isight.
Technical Paper

Modeling and Model Analysis of a Full-Car Fitted with an Anti-Pitch Anti-Roll Hydraulically Interconnected Suspension

2014-04-01
2014-01-0849
In this paper, a passive anti-pitch anti-roll hydraulically interconnected suspension is proposed for compromising the control between the pitch and roll mode of the sprung mass. It has the advantage in improving the directional stability and handling quality of vehicles during steering and braking manoeuvres. Frequency domain analysis of a 7-DOF full-car model with the proposed system is presented. The modeling of mechanical subsystem is established based on the Newton's second law. Then the mechanical-hydraulic system boundary conditions are developed by incorporating the hydraulic strut forces into the mechanical subsystem as externally applied forces. The hydraulic subsystem is modelled by using the impedance method, and each circuit are determined by the transfer matrix method. And then the modal analysis method is employed to perform the vibration analysis between the vehicle with the conventional suspension and the proposed HIS.
Technical Paper

Lateral Dynamics and Suspension Tuning for a Two-Axle Bus Fitted with Roll-Resistant Hydraulically Interconnected Suspension

2018-04-03
2018-01-0831
In this paper, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance the roll and lateral dynamics of a two-axle bus. It is well-known that the suspension tuning is of great importance in the design process and has also been explored in a number of studies, while only minimal efforts have been made for suspension tuning for the newly proposed HIS system especially considering lateral stability. This study aims to explore lateral dynamics and suspension tuning of a two-axle bus with HIS system, which could also provide valuable information for roll dynamics analysis. Based on a ten-DOFs lumped-mass full-car model of a bus either integrating transient mechanical-hydraulic model for HIS or the traditional suspension components, three newly promoted parameters of HIS system are defined and analyzed-namely the total roll stiffness (TRS), roll stiffness distribution ratio (RSDR) and roll-plane damping (RPD).
Technical Paper

Investigation of the Influence of an Hydraulically Interconnected Suspension (HIS) on Steady-State Cornering

2017-03-28
2017-01-0430
This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Technical Paper

Integrated Decision-Making and Planning Method for Autonomous Vehicles Based on an Improved Driving Risk Field

2023-12-31
2023-01-7112
The driving risk field model offers a feasible approach for assessing driving risks and planning safe trajectory in complex traffic scenarios. However, the conventional risk field fails to account for the vehicle size and acceleration, results in the same trajectories are generated when facing different vehicle types and unable to make safe decisions in emergency situations. Therefore, this paper firstly introduces the acceleration and vehicle size of surrounding vehicles for improving the driving risk model. Then, an integrated decision-making and planning model is proposed based on the combination of the novelty risk field and model predictive control (MPC), in which driving risk and vehicle dynamics constraints are taken into consideration. Finally, the multiple driving scenarios are designed and analyzed for validate the proposed model.
Journal Article

Influencing Factors Research on Vehicle Path Planning Based on Elastic Bands for Collision Avoidance

2012-09-24
2012-01-2015
This paper presents the different influence factors to vehicle's path planning, including the guide-potential shape and its parameters, the guild-potential influence scale factor, the stiffness of the elastic bands and the speed of the host vehicle. The assessment of emergency path is based on the dynamic performance of the host vehicle, the lateral acceleration and yaw rate, and its mean-square values accesses the stability of the host vehicle when following the path. In order to take evasion maneuvers more steadily, a guide-potential affecting the moving vehicles behind the obstacle is built, which encourages the host vehicle to change lane appropriately. Three different shape guide-potential models, namely half-circle-like, half-ellipse-like and parabola-like, are proposed and compared in this paper. Meanwhile, hazard map of the road environment which includes the lanes, borders and obstacles is generated.
Technical Paper

Implementation and Experimental Study of a Novel Air Spring Combined with Hydraulically Interconnected Suspension to Enhance Roll Stiffness on Buses

2015-04-14
2015-01-0652
Air spring due to its superior ride comfort performance has been widely used in distance passenger transporting vehicles. Since the requirements for ride comfort and handling performance are contradict to each other, handling performance and even roll stability are sacrificed to some extent to obtain good ride comfort. Due to the complex terrain and limited manufacturing level, in the past several years, bus rollover accidents with serious casualties have been reported frequently and bus safety has attracted more and more attention from bus manufacturers in China. On one hand the bus standards have to be raised, and on the other hand, novel solutions which can effectively improve the roll stability of air spring bus are needed to replace the inadequacy of anti-roll bars.
Technical Paper

Hierarchical Control Strategy for Active Suspension Equipped with an Electromagnetic Actuator

2023-12-31
2023-01-7077
Electromagnetic suspension systems have increasingly gained widespread attention due to their superiority in improving ride comfort while providing fast response, excellent controllability and high mechanical efficiency, but their applications are limited due to the accuracy of the underlying control actuation tracking. For addressing this problem, this study presents a novel hierarchical control strategy for an electromagnetic active suspension (EMAS) system equipped with an electromagnetic actuator (EMA) structure. The structure of the EMA device and the working principle of the motion conversion model are introduced in detail first, and the motion conversion equation is derived based on the force-torque relationship. Based on this, a linear quadratic regulator (LQR) control method is proposed to be applied to a half-vehicle suspension system to improve the vibration isolation performance of the vehicle and ensure the ride comfort.
Journal Article

Handling Analysis of a Vehicle Fitted with Roll-Plane Hydraulically Interconnected Suspension Using Motion-Mode Energy Method

2014-04-01
2014-01-0110
This paper employs the motion-mode energy method (MEM) to investigate the effects of a roll-plane hydraulically interconnected suspension (HIS) system on vehicle body-wheel motion-mode energy distribution. A roll-plane HIS system can directly provide stiffness and damping to vehicle roll motion-mode, in addition to spring and shock absorbers in each wheel station. A four degree-of-freedom (DOF) roll-plane half-car model is employed for this study, which contains four body-wheel motion-modes, including body bounce mode, body roll mode, wheel bounce mode and wheel roll mode. For a half-car model, its dynamic energy contained in the relative motions between its body and wheels is a sum of the energy of these four motion-modes. Numerical examples and full-car experiments are used to illustrate the concept of the effects of HIS on motion-mode energy distribution.
Technical Paper

Experimental Investigation of Interconnected Hydraulic Suspensions with Different Configurations to Soften Warp Mode for Improving Off-Road Vehicle Trafficability

2015-04-14
2015-01-0658
Hydraulic suspension systems with different interconnected configurations can decouple suspension mode and improve performance of a particular mode. In this paper, two types of interconnected suspensions are compared for off-road vehicle trafficability. Traditionally, anti-roll bar, a mechanically interconnected suspension system, connecting left and right suspension, decouples roll mode from the bounce mode and results in a stiff roll mode and a soft bounce mode, which is desired. However, anti-roll bars fail to connect the front wheel motions with the rear wheels', thus the wheels' motions in the warp mode are affected by anti-roll bars and it results an undesired stiffened warp mode. A stiffened warp mode limits the wheel-ground contact and may cause one wheel lift up especially during off-road drive. In contrast with anti-roll bars, two types of hydraulic suspensions which interconnect four wheels (for two-axis vehicles) can further decouple articulation mode from other modes.
Technical Paper

Dynamic Characteristics Analysis of an Ambulance with Hydraulically Interconnected Suspension System

2018-04-03
2018-01-0815
The vibration and instability experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from emergency care. This paper presents a hydraulically interconnected suspension (HIS) system which can achieve enhanced cooperative control of roll, pitch and bounce motion modes to improve the ambulance's ride comfort and handling performance. A lumped-mass model integrated with a mechanical and hydraulic coupled system is developed by using free-body diagram and transfer matrix methods. The mechanical-fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. A special modal analysis method is employed to reveal the vibration characteristics of the ambulance with the HIS.
Technical Paper

Design and Dynamic Analysis of Bounce and Pitch Plane Hydraulically Interconnected Suspension for Mining Vehicle to Improve Ride Comfort and Pitching Stiffness

2015-04-14
2015-01-0617
This paper demonstrates time response analysis of the mining vehicle with bounce and pitch plane hydraulically interconnected suspension (HIS) system. Since the mining vehicles working in harsh conditions inducing obvious pitch motion and the hard stiffness of suspensions leading to the acute vibration, the passive hydraulically interconnected system is proposed to provide better ride comfort. Furthermore, the hydraulic system also increases the suspension stiffness in the pitch mode to prevent vehicle from large pitch motions. According to the hydraulic and mechanical coupled characteristic of the mining vehicles, a 7degrees of freedom (7-DOFS) mathematical model is employed and the state space method is used to establish the mechanical and hydraulic coupled dynamic equations. In this paper, the vehicles are subjected to straight line braking input, triangle block bump input applied to the wheels and random road tests.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
X