Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Simultaneous Measurement of In-Cylinder Temperature and Residual Gas Concentration in the Vicinity of the Spark Plug by Wavelength Modulation Infrared Absorption

This paper presents a new measurement technique for in-cylinder gas temperature and residual gas concentration during the compression stroke of an internal combustion (IC) engine. This technique is based on the infrared absorption of water vapor by a wavelength modulated laser. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) was adopted to enable the short-path measurements over a wide range of temperatures and pressures corresponding to the late compression stroke in a typical automotive engine. The WMS-2f signal is detected through a bandpass filter at a width of 7.5 kHz, enabling crank angle-resolved measurements. The temperature is determined from the ratio of optical absorption for two overtone transitions of water vapor in the intake gas mixture, and the H2O concentration is determined from this inferred temperature and the absorption for one of the transitions.
Technical Paper

Lean-NOx and Plasma Catalysis Over γ-Alumina for Heavy Duty Diesel Applications

The NOx reduction performance under lean conditions over γ-alumina was evaluated using a micro-reactor system and a non-thermal plasma-equipped bench test system. Various alumina samples were obtained from alumina manufacturers to assess commercial alumina materials. In addition, γ-alumina samples were synthesized at Caterpillar with a sol-gel technique in order to control alumina properties. The deNOx performances of the alumina samples were compared. The alumina samples were characterized with analytical techniques such as inductively coupled plasma (ICP) emission spectroscopy, temperature programmed desorption (TPD) and surface area measurements (BET) to understand physical and chemical properties. The information derived from these techniques was correlated with the NOx reduction performance to identify key parameters of γ-alumina for optimizing materials for lean-NOx and plasma assisted catalysis.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Technical Paper

Closed Loop Control of Lean Fuel-Air Ratios Using a Temperature Compensated Zirconia Oxygen Sensor

Several recent papers describe closed loop fuel-air ratio control systems designed to operate at stoichiometric conditions because of the high three-way catalyst conversion efficiencies which occur only in a narrow band around stoichiometric. This paper investigates closed loop control of fuel-air ratio using a temperature compensated zirconia sensor at other than stoichiometric conditions. If engines can be made to run at very lean(Φ≈0.6-0.7) equivalence ratios through greater attention to proper fuel-air mixing and vaporization, CO, HC, and NOx emissions are minimized simultaneously. Closed loop control in the lean region makes the system insensitive to parameter variations and allows the fuel-air ratio to be maintained closer to the lean limit than would be possible under conventional open loop conditions.