Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Steam Reformer/Burner Integration and Analysis for an Indirect Methanol Fuel Cell Vehicle Fuel Processor

2001-03-05
2001-01-0539
This paper focuses on the impact of proper thermal integration between two major components of the indirect methanol fuel cell vehicle fuel processor (reformer and burner). The fuel processor uses the steam reformation of methanol to produce the hydrogen required by the fuel cell. Since the steam reformation is an endothermic process, the required thermal energy is supplied by a catalytic burner. The performance of the fuel processor is very strongly influenced by the extent of thermal integration between the reformer and burner. Both components are modeled as a set of CSTRs (Continuous Stirred Tank Reactors) using Matlab/Simulink. The current model assumes no time lag between the methanol sent into the reformer and the methanol sent into the burner to generate the necessary heat for the reformer reactions to occur.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Methanol vs. Natural Gas Vehicles: A Comparison of Resource Supply, Performance, Emissions, Fuel Storage, Safety, Costs, and Transitions.

1988-10-01
881656
This paper is a comprehensive comparative analysis of methanol, compressed natural gas, and liquefied natural gas as automotive fuels. First, we examine natural gas, coal, and biomass feedstocks, and the “security” of foreign feedstocks. Next, vehicle performance and emissions are considered, followed by an analysis of vehicle refuelling and storage technology. Environmental impacts of fuel production and distribution are analyzed; followed by a review of health, flammability, transport, and end-use hazards. We perform a detailed cost analysis that combines fuel cost and vehicle cost into discounted life-cycle cost-per-mile. Finally, we discuss the feasibility and implications of transitions to methanol and natural gas from our current vehicular fuel system. We find that natural gas vehicles may offer slight economic and environmental advantages, but that a transition to natural gas fuel would be more difficult, at least in the U.S.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

Field Testing of High Biodiesel Blends on Engine and Aftertreatement Durability, Performance, and Maintenance in an On-Highway Application

2013-04-08
2013-01-0511
This paper features an application study on the impact of different blend levels of commercially-supplied biodiesel on engine and aftertreatment systems' durability and reliability as well as the impact on owning and operating factors: service intervals and fuel economy. The study was conducted on a bus application with a 2007 on highway emissions equipped engine running biodiesel blends of B5, B20, and B99 for a total period approaching 4500 hours. Biodiesel of waste cooking grease feedstock was used for the majority of the testing, including B5 and B20 blends. Biodiesel of soybean feedstock was used for testing on B99 blend. No negative impacts on engine and aftertreatment performance and durability or indication of future potential issues were found when using B5 and B20. For B99 measurable impacts on engine and aftertreatment performance and owning and operating cost were observed.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

Balancing Stack, Air Supply, and Water/Thermal Management Demands for an Indirect Methanol PEM Fuel Cell System

2001-03-05
2001-01-0535
This work presents a method to maximize the net power output of an indirect methanol PEM fuel cell system. This method establishes an operating strategy for the air supply based on the stack, air supply and water and thermal management (WTM) sub-system characteristics - holding anode conditions constant. It is shown that operating strategies based on individual components result in the inefficient operation of the overall system. Inclusion of the WTM modifies the optimal operating conditions for both low and high pressure systems. However the results for high pressure show an efficiency gain through reducing air pressure and increasing airflow, the opposite of what is expected. This work also outlines the components and issues not included and their importance in system operation.
Technical Paper

A Simulation Model for an Indirect Methanol Fuel Cell Vehicle

2000-08-21
2000-01-3083
This work focuses on the algorithms to simulate and analyze the characteristics of an indirect methanol fuel cell vehicle. The individual components of the electric drive train including transmission, the vehicle properties, such as drag, frontal area, wheel inertia etc., and the fuel cell system are modeled in a dynamic manner. Further the interaction between the individual components and a simple driver model is described. The algorithms are coded using the simulation tool Matlab/Simulink. The simulation tool is strictly setup in a modular form allowing modifications of individual component characteristics or control algorithms without the need to change the remainder of the model. For the benefit of a more in depth discussion of the applied algorithms and the setup of the model this paper focuses solely on the case of an Indirect Methanol Fuel Cell Vehicle (IMFCV) with steam reformer and without any additional energy storage.
Technical Paper

A 322,000 kilometer (200,000 mile) Over the Road Test with HySEE Biodiesel in a Heavy Duty Truck

2000-09-11
2000-01-2647
In July 1997, the Pacific Northwest and Alaska Regional Bioenergy Program, in cooperation with several industrial and institutional partners initiated a long-haul 322,000 km (200,000 mile) operational demonstration using a biodiesel and diesel fuel blend in a 324 kW (435 HP), Caterpillar 3406E Engine, and a Kenworth Class 8 heavy duty truck. This project was designed to: develop definitive biodiesel performance information, collect emissions data for both regulated and non-regulated compounds including mutagenic activity, and collect heavy-duty operational engine performance and durability information. To assess long-term engine durability and wear; including injector, valve and port deposit formations; the engine was dismantled for inspection and evaluation at the conclusion of the demonstration. The fuel used was a 50% blend of biodiesel produced from used cooking oil (hydrogenated soy ethyl ester) and 50% 2-D petroleum diesel.
X