Refine Your Search

Topic

Search Results

Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

Thermal Load in a Heavy Duty Diesel Engine with EUI System

2002-03-04
2002-01-0492
High pressure fuel injection systems, such as common rail (CR) systems and electronically-controlled unit injector (EUI) systems, have been widely applied to modern heavy duty diesel engines. They are shown to be very effective for achieving high power density with high fuel efficiency and low exhaust gas emissions. However, the increased peak combustion pressure gives additional structural stress and thermal load to engine structure. Thus, proper material selection and thermal analysis of engine components are essential in order to meet the durability requirements of heavy-duty diesel engines adopting a high pressure injection system. In this paper, thermal analysis of a 12.9 ℓ diesel engine with an EUI system was studied. Temperatures were measured on a cylinder head, a piston and a cylinder liner. A specially designed linkage system was used to measure the piston temperatures. A radio-tracer technique was also used to verify the rotation of piston rings.
Technical Paper

The development of the autonomous driving system for a car-to-car crash test

2000-06-12
2000-05-0210
To simulate the car-to-car crash accidents in the real field, the Autonomous Driving System was developed. This system consists of communicating, sensing, accelerating, braking, steering and data recording subsystems. All these were designed to be compact, light and collapsible, so that the crash characteristics of test vehicle were not affected. The velocity performance of the system covers from 10 kph to 100 kph within ± 0.5 kph error, and the lateral deviation is constrained within ± 20 mm. With this system, several frontal offset and side car-to-car crash tests were carried out successfully. Deformations, injury levels, deceleration signals and dynamic behaviors during crash were typically investigated. And the dynamic behaviors were compared with the simulation results of EDSMAC. Car-to-car crash tests between small and large vehicles with different masses were carried out and the effects on the compatibility were investigated.
Technical Paper

The Study of the Structure for the Head Protection on Front Pillar in Crash or Rollover of the Vehicle

2002-03-04
2002-01-0684
In order to meet FMVSS 201 (U) requirements, the upper vehicle interior structures with trim in a vehicle need to be properly designed to minimize injuries when head impacts these components. This paper presents a study of countermeasures in pillars using FEA approach by considering some design factors. Optimal designs are then selected for interior head impact protection based on CAE analysis using LS-DYNA non-linear finite element code.
Technical Paper

The Effects of Various Design Factors for Invisible Passenger-side Airbag Door Opening

2002-03-04
2002-01-0184
Invisible Passenger-side Airbag (IPAB) door systems must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. A predictive Finite Element Analysis (FEA) was carried out to calculate the effects of varying design factors (the length and thickness of kink-hinge, tear-line type and temperature) on the IPAB-door opening. The impact performance of plastic parts was considered, because the mechanical properties of thermoplastic materials are strongly dependent on strain rate.
Technical Paper

The Effects of Injection Parameters on a Heavy-Duty Diesel Engine with TICS System

1998-02-23
981070
In this study, a series of tests have been carried out to evaluate the effects of the injection rate and timing on bsfc, NOx, and PM emissions in a heavy-duty diesel engine with TICS FIE system. Injection line pressure, cylinder pressure, NOx and smoke were measured with various injection times and injection rates. The injection rate was altered at a fixed injection timing, which could be realized either by changing the TICS setting time or by using different cam profiles. The injection time was varied by using TICS timing control function at a given setting time. A parametric study of the injection rate in in-line pump system was tried to correlate injection rate variations with combustion characteristics and emission. Two parameters, the injection pressure rising rate and the initially injected fuel quantity were introduced to characterize fuel injection.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

The Analysis of Relationship between Vehicle Drop & Dummy Injury

2016-04-05
2016-01-1539
Given the importance of vehicle safety, OEMs are focused on ensuring the safety of passengers during car accidents. Injury is related to the passenger’s kinematics and interaction with airbag, seatbelt, and vehicle drop. However, the correlation between vehicle drop (vehicle pitch) and passengers’ injury is the main issue recently being discussed. This paper presents the definition of vehicle drop and analyzes the relationship through a dynamic sled test. This study defines the relationship between individual vehicle systems (body, chassis, tire, etc.) and vehicle drop, and how to control the amount of vehicle drop to minimize the injury of passengers.
Technical Paper

Study on Optimization for LNT+SCR System of Diesel Vehicle to Comply with the LEV3 Regulations

2014-04-01
2014-01-1529
This paper describes how to meet LEVII ULEV70 emission standards and minimize fuel consumption with the combined NOx after-treatment (LNT+SCR) system for diesel vehicles. Through analysis of LNT's functionality and characteristics in a LNT+SCR combined after-treatment system, allowed a new control strategy to be established, different from the existing LNT-only system. In the 200°C or higher condition where SCR can provide the most stable NOx conversion efficiency, rich regeneration of LNT was optimized to minimize LNT deterioration and fuel consumption. Optimized mapping between rapid heat up strategy and raw NOx reduction maximized LNT's NOx conversion efficiency during the intervals when it is not possible for SCR to purify NOx This study used bench aged catalysts which were equivalent to 150K full useful life.
Technical Paper

Study of optimization about smoke and driveability in diesel engine

2000-06-12
2000-05-0315
In an effort to protect the earth''s environment emission regulations in the diesel engine field are becoming increasingly strict. Especially, free acceleration smoke is one of the major concerns because it not only affects the perception for the clearance of diesel engines, but also is regulated by emission legislations. In this report, we will describe how various engine parameters effect the free acceleration smoke and also describe how we can optimize a startability of vehicle simultaneously with the reduction of smoke.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

2019-04-02
2019-01-0943
In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
Technical Paper

Optimization of the Crashworthiness of a Passenger Car Using Iterative Simulations

1993-11-01
931977
The paper describes an engineering project carried out to optimize the crashworthiness of an existing passenger car for frontal crash using a procedure relying on numerical simulation. An optimization target is defined in terms of an ideal acceleration pulse at the seats anchors. The acceleration time history and structural members are scanned in parallel to correlate the local acceleration peaks to specific structural members. Members details are iteratively modified in order to alter the accelerations and get closer to the target.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion

2019-04-02
2019-01-0207
Numerical investigation of engine performance and emissions of a six-stroke gasoline compression ignition (GCI) engine combustion at low load conditions is presented. In order to identify the effects of additional two strokes of the six-stroke engine cycle on the thermal and chemical conditions of charge mixtures, an in-house multi-dimensional CFD code coupled with high fidelity physical sub-models along with the Chemkin library was employed. The combustion and emissions were calculated using a reduced chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Two power strokes per cycle were achieved using multiple injections during compression strokes. Parametric variations of injection strategy viz., individual injection timing for both the power strokes and the split ratio that enable the control of combustion phasing of both the power strokes were explored.
Technical Paper

MEMS Sensor for Particulate Matter Measurement of Exhaust Gas

2013-03-25
2013-01-0011
To meet Euro6 regulation particulate matter MEMS sensor is suggested. This sensor detects induced charges by PM. To increase sensitivity of the sensor, surface area of the sensor is increased by MEMS process. Sensor is made by low resistive silicon. Total size is 4.3 mm x 59.4 mm x 1 mm and size of sensor part is 4.3 mm x 13 mm. On the backside of the sensor, Pt heater is fabricated to remove piled PM on sensor part. After sensor part, charge amplifier is used to measure the induced charge of the sensor. From FFT of sensor signal, it can sense 5.46 mg/m₃ of PM. In this paper, MEMS devices for exhaust system monitoring of automobiles are investigated. PM emitted from diesel engine is charged particle. Charge-induced-type PM sensor we designed can measure by real time and it doesn't need particle collection apparatus
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

Invisible Advanced Passenger-Side Airbag Door Design for Optimal Deployment and Head Impact Performance

2004-03-08
2004-01-0850
Hard panel types of invisible passenger-side airbag (IPAB) door system must be designed with a weakened area such that the airbag will deploy through the Instrument Panel (IP) in the intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test (ECE 21.01). If the advanced-airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of IPAB door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. We introduced the ‘Operating Window’ idea from quality engineering to design the hard panel types of IPAB door applied to the advanced-airbag for optimal deployment and head impact performance. To accurately predict impact performance, it is important to characterize the strain rate.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
Technical Paper

Development of the Overmolding Instrument Panel

2013-03-25
2013-01-0018
We developed the hard IP (Instrument Panel) that is integrally over molded with a soft layer (TPO, Thermo Plastic Olefin) for the soft feeling and cost reduction. And also we produced the cost-effective PAB(Passenger-side Airbag) door system that had an in-mold tearseam and avoided competitors' patents simultaneously. The development procedure of this technology is; ① Material for overmolding ② Design optimization ③ Solving tool challenges. The reduction of process through integrally molding with soft material helped to accomplish a soft feeling on the IP and cost reduction at the same time. The deployment, head impact and heat aging tests were conducted and 5 patents were applied such as the optimization of the mold structure and injection condition.
X