Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle electric power simulator for optimizing the electric charging system

2000-06-12
2000-05-0054
The electrical power system is the vital lifeline to most of the control systems on modern vehicles. The demands on the system are highly complex, and a detailed understanding of the system behavior is necessary both to the process of systems integration and to the economic design of a specific control system or actuator. The vehicle electric power system, which consists of two major components: a generator and a battery, has to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Three-way catalysts for partial lean-burn engine vehicle

2000-06-12
2000-05-0322
Emission of carbon dioxide from mobile sources seriously concerned to solve greenhouse effect and high price of gasoline in some countries have resulted in the development of lean-burn concept engine. In spite of many studies on the lean deNOx catalyst, we have no clear solution to obtain high fuel economy and high efficiency of NOx conversion in lean-burn application. This paper describes applicability and problems of NOx adsorber system to partial lean-burn vehicle, the development of three-way catalyst with improvement of washcoat technology based on three-way catalyst used for gasoline application, and comparison test results of evaluations is synthesized gas activity test, Federal Test Procedure (FTP) test, etc. This study shows improved three-way catalysts in partial lean- burn vehicle have max. 89% of NOx conversion in FTP without adding rich spike and regeneration functions to engine management system.
Technical Paper

Thermal Load in a Heavy Duty Diesel Engine with EUI System

2002-03-04
2002-01-0492
High pressure fuel injection systems, such as common rail (CR) systems and electronically-controlled unit injector (EUI) systems, have been widely applied to modern heavy duty diesel engines. They are shown to be very effective for achieving high power density with high fuel efficiency and low exhaust gas emissions. However, the increased peak combustion pressure gives additional structural stress and thermal load to engine structure. Thus, proper material selection and thermal analysis of engine components are essential in order to meet the durability requirements of heavy-duty diesel engines adopting a high pressure injection system. In this paper, thermal analysis of a 12.9 ℓ diesel engine with an EUI system was studied. Temperatures were measured on a cylinder head, a piston and a cylinder liner. A specially designed linkage system was used to measure the piston temperatures. A radio-tracer technique was also used to verify the rotation of piston rings.
Technical Paper

The Flexible EV/HEV and SOC Band Control Corresponding to Driving Mode, Driver's Driving Style and Environmental Circumstances

2012-04-16
2012-01-1016
Recently, in accordance with the increased interest of consumer in fuel efficiency due to the phenomenon of high oil price, complaints against actual fuel efficiency in the road in comparison with the certified fuel efficiency have been raised frequently. Especially in case of the hybrid vehicle which is highly popular for the reason of its high fuel efficiency compared with that of existing gasoline car, deviation in the fuel efficiency will be higher compared with that of gasoline car in accordance with the driving mode (downtown/highway), driver's driving style (wild/mild) and external environmental condition (gradient/temperature/altitude). To solve them, this paper developed a method so that the SOC (State Of Charge), EV/HEV mode transition point can be controlled variably in accordance with the driving mode, driver's driving style and external environmental condition by making the most of characteristics of hybrid.
Technical Paper

The Effect of Tempering on Mechanical and Fatigue Properties in Gas-Carburized Cr-Mo Gear Steel

1997-02-24
970709
The effects of tempering on carburized Cr-Mo gear steel were investigated through mechanical and fatigue tests. Specimens were carburized at 900°C for 180 minutes, and then oil quenched at 150°C for 10 minutes of holding time and cooled to room temperature. The subsequent tempering process was performed to 160°C for 90 minutes. Surface hardness and residual compressive stress were decreased by tempering treatment, whereas tensile strength, yield strength and impact energy were increased. Bending fatigue endurance limits for both tempered and untempered specimens were same as 779MPa. The strength of roller contact fatigue is also not greatly influenced by tempering treatment. Thermal distortion for carburized transfer driven gear before and after tempering exhibited a similar distribution. Microstructural changes during tempering were also discussed.
Technical Paper

The Design and Development of the Hyundai Alpha Engine

1989-11-01
891185
Main design features and some of the development work carried out on the first new engines to be produced in-house by Hyundai Motor Co. are described. The Alpha family of multi-valve, four cylinder engines comprises 1.3 and 1.5L naturally aspirated units and a 1.5L turbocharged version. Modern features are incorporated in the engines in order to provide higher performance and good fuel economy with excellent durability at reasonable cost. Hyundai Motor Co. (HMC) was established in 1967 and, in the following year, commenced production of passenger cars for the domestic market, using CKD components supplied by Ford of Europe. In 1974 the Pony saloon car entered production; this used mainly locally produced components but most of the major items, including the power train - engine and gearbox - were manufactured under the license from Mitsubishi Motors.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

2019-04-02
2019-01-0245
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Study on Optimization for LNT+SCR System of Diesel Vehicle to Comply with the LEV3 Regulations

2014-04-01
2014-01-1529
This paper describes how to meet LEVII ULEV70 emission standards and minimize fuel consumption with the combined NOx after-treatment (LNT+SCR) system for diesel vehicles. Through analysis of LNT's functionality and characteristics in a LNT+SCR combined after-treatment system, allowed a new control strategy to be established, different from the existing LNT-only system. In the 200°C or higher condition where SCR can provide the most stable NOx conversion efficiency, rich regeneration of LNT was optimized to minimize LNT deterioration and fuel consumption. Optimized mapping between rapid heat up strategy and raw NOx reduction maximized LNT's NOx conversion efficiency during the intervals when it is not possible for SCR to purify NOx This study used bench aged catalysts which were equivalent to 150K full useful life.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

Scavenger free three-way catalyst with low hydrogen sulfide emission

2000-06-12
2000-05-0308
This study suggests new types of catalysts that show low hydrogen sulfide emission without scavenger such as NiO. Hydrogen sulfide can be reduced by changing the physicochemical properties of washcoat components. Synthesized gas activity tests were performed to investigate the effect of modified washcoat on hydrogen sulfide formation and catalytic activity. BET surface area tests, X- ray diffraction tests, and gas chromatography tests were also carried out to examine the characteristics of catalysts. Preparation methods for catalysts were focused on minimizing the adsorption of sulfur species on catalysts. The first approach is heat treatment of cerium oxide to reduce adsorption sites for sulfur compounds. But this leads to deterioration of CO and NOx conversion efficiencies. The second one is adding new types of promoters that increase thermal durability and dynamic oxygen storing function of cerium oxide.
Technical Paper

Research and Development of Hyundai Flexible Fuel Vehicles (FFVs)

1993-03-01
930330
This paper describes Hyundai's research and development work on a flexible fuel vehicle (FFV). The work on FFV has been conducted to evaluate its potential as an alternative to the conventional gasoline vehicle. Hyundai FFV described here can operate on M85, gasoline, or any of their combinations, in which the methanol concentration is measured by an electrostatic type fuel sensor. For that operation, a special FFV ECU has been developed and incorporated in the FFV. The characteristics affecting FFV operation, such as FFV ECU control strategy and injector flow rate, have been investigated and optimized by experiment. Various development tests have been performed in view of engine performance, durability, cold startability, and exhaust emissions reduction. The exhaust gas aftertreatment system being consisted of manifold type catalytic converter(MCC) and secondary air injection system has shown good emission reduction performance including formaldehyde emission.
Journal Article

Recent Advances in the Development of Hyundai · Kia's Fuel Cell Electric Vehicles

2010-04-12
2010-01-1089
Wide attention to fuel cell electric vehicles (FCEVs) comes from two huge issues currently the world is facing with: the concern of the petroleum reserves depletion due to consequent oil dependence and the earth global warming due in some extent to vehicle emissions. In this background, Hyundai, along with its sister company Kia, has been building the FCEVs and operating their test fleet with several tens of units at home and abroad. Since 2004, 32 passenger vehicles have been offered for the Department of Energy's controlled hydrogen fleet and infrastructure demonstration and validation project in the U.S. In the meantime, from 2006, 30 passenger vehicles as well as four buses, featuring the in-house developed fuel cell stack and its associated components, are currently under the domestic operation for the FCEV learning demonstration led by the Ministry of Knowledge and Economy.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

Powertrain-related vehicle sound development

2000-06-12
2000-05-0301
This paper reflects an efficient and comprehensive approach for vehicle sound optimization integrated into the entire development process. It shows the benefits of early consideration of typical vehicle NVH features and of intensive interaction of P/T and vehicle responsibilities. The process presented here considers the typical restriction that acoustically representative prototypes of engines and vehicles are not available simultaneously at the early development phase. For process optimization at this stage, a method for vehicle interior noise estimation is developed, which bases on measurements from the P/T test bench only, while the vehicle transfer behavior for airborne and structure-borne noise is assumed to be similar to a favorable existing vehicle. This method enables to start with the pre- optimization of the pure P/T and its components by focusing on such approaches which are mainly relevant for the vehicle interior noise.
Technical Paper

Performance and Exhaust Emissions of Hyundai Flexible Fuel Vehicle (FFV)

1993-11-01
931986
Recently, flexible fuel vehicle (FFV) has been drawn great attention because of its response for immediate use as alternative fueled one. Hyundai FFV can be operated on arbitrary fuel mixtures between gasoline and M85 with the specially programmed electronic control unit (ECU) which can determine optimized fueling quantity and ignition timing as the methanol content by the signal from electrostatic type fuel sensor. In this paper, the results of various tests including engine performance, cold startability, durability and exhaust emission reduction have been described. Full load, cold mode durability tests and field trials have been carried out with some material changes and surface treatments in the lubricating parts and fuel system. But, more work on its durability improvement is still required.
Technical Paper

Numerical Study on Fluid Flow and Heat Transfer Characteristics of a Ventilated Brake Disc Connected to a Wheel

2018-10-05
2018-01-1878
The role of a brake disc is to convert the kinetic energy of automobiles into thermal energy caused by friction between the brake pads and disc surfaces. The braking performance of an overheated disc is decreased due to hot judder and fade. Hence, the cooling technology of a brake disc is one of the most important issues related to automobile safety. In the present study, the fluid flow and heat transfer analysis of a ventilated brake disc are conducted numerically. Some geometries of automotive parts such as bearings, hubs and wheels are considered in this study. The commercial code ANSYS CFX is used to simulate the fluid flow and the conjugate heat transfer which includes conduction and convection. To evaluate the cooling performance in each case, the results, including the flow patterns of cooling air inside the wheel and the heat transfer coefficient distribution at the disc surfaces, were investigated and compared for various disc-hub combinations.
X