Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

X-by-Wire: Opportunities, Challenges and Trends

2003-03-03
2003-01-0113
This paper will outline the results of a study performed to analyze the market introduction of x-by-wire applications in the context of weak global industry environment, technological and legislative challenges, standardization issues and end customer benefits. This paper attempts to provide a bird-view on influence factors and impacts for the x-by-wire market, including e.g. the end customer's acceptance and legal environment driving further development in specific areas. Further, major driving forces on semiconductor/component level will be outlined regarding e.g. pin-count, computation performance and heat dissipation, but also possible scenarios and solutions towards safe and efficient system design and partitioning.
Technical Paper

Virtual Prototypes as Part of the Design Flow of Highly Complex ECUs

2005-04-11
2005-01-1342
Automotive powertrain and safety systems under design today are highly complex, incorporating more than one CPU core, running with more than 100 MHz and consisting of several 10 million transistors. Software complexity increases similarly making new methodologies and tools mandatory to manage the overall system. The use of accurate virtual prototypes improves the quality of systems with respect to system architecture design and software development. This approach is demonstrated with the example of the PCP/GPTA subsystem for Infineon's AUDO-NG powertrain controllers.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

Vehicle electric power simulator for optimizing the electric charging system

2000-06-12
2000-05-0054
The electrical power system is the vital lifeline to most of the control systems on modern vehicles. The demands on the system are highly complex, and a detailed understanding of the system behavior is necessary both to the process of systems integration and to the economic design of a specific control system or actuator. The vehicle electric power system, which consists of two major components: a generator and a battery, has to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Timing Correctness in Safety-Related Automotive Software

2011-04-12
2011-01-0449
Automotive applications classed as safety-related or safety-critical are now important differentiating technologies in the automotive industry. The emergence of safety standard ISO 26262 underlines the increasing importance of safety in automotive software. As well as functional requirements, hard real-time requirements are of crucial importance to safety-related software as there is a need to prove that the system functionality is fulfilled, even in worst-case scenarios. Measurement-based WCET (Worst-Case Execution Time) analysis combines on-target timing measurements with static analysis of program structure to calculate predicted worst-case paths and times. This is in contrast to traditional end-to-end timing measurements, which give no confidence that the worst-case path is actually tested and no insight into the location of any timing problems that do emerge.
Technical Paper

Timing Analysis and Tracing Concepts for ECU Development

2014-04-01
2014-01-0190
Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources.
Technical Paper

The development of in-vehicle unit of advanced vehicle information and communication system

2000-06-12
2000-05-0370
This paper presents an in-vehicle information system, AVICS in development. With AVICS, the driver could get the various information on traffic, news, weather, restaurants, and so on, which the AVICS information center provides via mobile telecommunication network. The driver requests the information to operator in center by voice with hands-free system or by handling the menu offered in the form of web-page. The in-vehicle unit for AVICS is designed to interface with wireless network with a built-in RF MODEM, to control NAVI system, and to display the information on the LCD monitor of AV system. The Internet browser is customized to parse specific HTML tags, application software is realized on 32-bit RISC processor. In this paper, we will overview the concept of AVICS and focus on development of in-vehicle unit of AVICS.
Technical Paper

The Wettability of Silicon Carbide by Liquid Pure Aluminum and Aluminum Alloys

1994-03-01
940808
There have been strong moves in recent years to introduce the metal matrix composites concept into higher volume applications, notably the automotive field where large volume production and lower material costs are required. The wettability between reinforcing materials and base material is one of important factors for the strength of composites and its manufacture. The main objective of this paper is to establish a basic understanding of wetting phenomena in SiC/liquid aluminum and aluminum alloy systems. In the present paper, results from the sessile drop method are reported for the effects on the wetting angle, θ, of free silicon in the silicon carbide substrate and of alloying additions of silicon, copper or magnesium to the aluminum drop for the temperature range 700-900 or 1400°C in the titanium-gettered vacuum (1.3 x 10-2 / 1.3 x 10-3 Pa).
Technical Paper

The Root Cause Analysis of Steel Fuel Tank Cracking at a Fatigue Point and Test Method Development of Durability

2017-03-28
2017-01-0393
Fuel tank in vehicle must hold the fuel in a stable way under any driving condition. However, the fuel tank might not conserve the fuel firmly in case a crack emerged while the fuel tank is exposed to different driving condition. Basically, when the engine is in purging at a normal ambient temperature before fuel boiling, the pressure inside the fuel tank decreases. However, the pressure inside a fuel tank increases while a vehicle is driven at extreme hot ambient temperature as fuel is boiling. This repetitive pressure change in the fuel tank comes with fuel tank’s physical expansion and shrink, which would cause a damage to the fuel tank. The main purpose of this research is to investigate the root cause of why fuel tank cracks at a fatigue point. We also aim to set up the method of how to test durability of the fuel tank in association with the pressure inside the tank.
Technical Paper

The Opening Mechanism Analysis on Hood, Tail Gate, and Trunk Lid by Mathematical Modeling

1995-02-01
950827
The theory and the computer software to analyze the behaviour of moving mechanism(Hood, Tail Gate and Trunk Lid) equiped with the gas lifters or the torsion bars has been developed to figure out what will be the dynamic behaviour of moving mechanism at the design stage. The developed computer software gives the approximated calculation of load-angle characteristics, the velocity, the acceleration and the total opening time so that the designer makes the optimum decision on the location and the strength of panel to which the gas lifters or the torsion bars are mounted.
Technical Paper

The Low Level Driver Design to Improve Dwell Timing of Engine Management System

2015-04-14
2015-01-1621
In Engine Management System, more accurate control is required to improve engine performance. Especially generating the precise ignition signal has a direct effect on better engine performance. In the beginning of this paper, a basic software structure to synchronize the engine crank signal and generate ignition signals will be explained. Several cases which can generate dwell timing error will be introduced based on this software structure. In addition, each impact level for each error case will be described. For cases of major error, compensation ways will be proposed in order to obtain more accurate dwell timing. The compensation ways by both microcontroller hardware and user software will be explained in detail. In conclusion, this paper will show the accuracy of ignition signal which implements proposed compensation ways that can be improved as compared to conventional ignition signal.
Technical Paper

The Effects of Vehicle Velocity and Engine Mount Stiffness on Ride Comfort

1994-03-01
941045
For the improvement of ride quality, development of vibration damping control systems and isolating methods become more important. To define basic ride vibrational modes, the effects of vehicle velocity and wheelbase on the standard road surfaces should be investigated. The different vibrational responses depending on the measurement positions of a vehicle body are presented with the bounce and the pitch motions. A methodology for the isolation of engine mount system's resonance to the road input and periodical excitations of tire/wheel nonuniformity forces are discussed. Using the computer simulation and the experimental results, a useful ride model with respect to the vehicle velocity and the stiffness of engine mount is presented.
Technical Paper

The Effect of Tempering on Mechanical and Fatigue Properties in Gas-Carburized Cr-Mo Gear Steel

1997-02-24
970709
The effects of tempering on carburized Cr-Mo gear steel were investigated through mechanical and fatigue tests. Specimens were carburized at 900°C for 180 minutes, and then oil quenched at 150°C for 10 minutes of holding time and cooled to room temperature. The subsequent tempering process was performed to 160°C for 90 minutes. Surface hardness and residual compressive stress were decreased by tempering treatment, whereas tensile strength, yield strength and impact energy were increased. Bending fatigue endurance limits for both tempered and untempered specimens were same as 779MPa. The strength of roller contact fatigue is also not greatly influenced by tempering treatment. Thermal distortion for carburized transfer driven gear before and after tempering exhibited a similar distribution. Microstructural changes during tempering were also discussed.
Technical Paper

The Development and Performance Simulation of Polychloroprene High Temperature Bush Type Engine Mount

1994-03-01
940888
In recent years, high performance engines and the reduction in engine room due to aerodynamic styling has caused increases in engine room temperature. Because of this increasing temperature, the conventional natural rubber engine mount is now at the marginal point on its performance and durability. Several heat resistant materials have been considered for engine mount applications because of this reason. Polychloroprene rubber could be a strong candidate for engine mount application due to its balance of heat resistance, dynamic properties, and fatigue life. This paper will discuss the development of the technology, property characteristics and part performance simulations on the HYUNDAI BUSH TYPE COMPLEX ENGINE MOUNT (for 2.0L DOHC ENGINE). This type of mount requires higher creep resistance and fatigue life than those of other designs, such as block or simple shear type mounts. Early evaluations of polychloroprene mounts have shown some deficiencies in creep resistance.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

TTCAN from Applications to Products in Automotive Systems

2003-03-03
2003-01-0114
This paper outlines the results of a study performed to analyze the mission of TTCAN from applications to products for automotive systems. As commonly acknowledged communication is one of the key elements for future and even present systems such as an automobile. A dramatically increasing number of busses and gateways even in low- to midrange vehicles is putting significant burden upon the validation scenario as well as the cost. Accordingly, numerous new initiatives have been started worldwide in order to find solutions to this; some of them by the definition of enhanced or new protocols. This paper shall have a look particular on the new standard of TTCAN (time-triggered communication on CAN). This protocol is based on the CAN data link layer as specified in ISO 11898-1 and may use standardized CAN physical layers such as specified in ISO 11898-2 (high-speed transceiver) or in ISO 11898-3 (fault-tolerant low-speed transceiver).
Technical Paper

System-Level Partitioning Using Mission-Level Design Tool for Electronic Valve Application

2003-03-03
2003-01-0865
In defining innovative and cost-effective chip sets for future automotive applications, system architects need high-level tools that allow them to rapidly determine the best silicon partitioning for a given application in terms of system performance as well as cost. The tool needs to be flexible, modular, and swift such that the system designer can perform abstract simulation iterations quickly for various functional partitioning scenarios, without requiring excessive computer resources. The tool must also be portable and adaptable to provide a simulation environment suitable to systems- or car-manufacturers for in-depth applications simulation and architecture assessment. The semiconductor component definition process using such a “mission-level” design tool for the automotive application electronic valve will be demonstrated. Methods for the analysis of electronic valve control system architectures using mission-level simulation will be developed.
X