Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibration and Noise Reduction Technology Development by Diesel Engine Fuel System Modeling

2013-10-14
2013-01-2589
In this paper, the vibration and noise reduction technology for diesel common rail injection system is studied. The NV problems of the injection system come typically from mechanical contacts (injector needle, pump) or fluid pulsations. They are exciting the injection system, which translates the excitations to the engine through the connection points. But it's not easy to identify the characteristic of internal excitation force exactly, so the simulation model based measurement test is considered at here. In order to predict the vibrations due to excitation related with the injection system of the diesel engine, the 1D/3D simulation models are used and the necessary dynamic tests, which are needed to create and validate the models, are done in the test bench.
Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

Understanding 3 Cylinder CVT Vehicle for Improving Fuel Economy and Reducing Noise and Vibration

2016-04-05
2016-01-1294
This study presents the NVH characteristics of a passenger vehicle with a three-cylinder engine and a Continuously Variable Transmission (CVT) and an optimization procedure to achieve balance between fuel economy and NVH. The goal of this study is to improve fuel economy by extending the lock-up area of the damper clutch at low vehicle speed and to minimize booming noise and body vibration caused by the direct connection of the engine and transmission. Resonance characteristics of the chassis systems and driveline have been studied and optimized by the experiment. NVH behavior of the vehicle body structure is investigated and modifications for refinement of booming and body vibration are proposed by simulation using MSC NASTRAN. Calibration parameters for CVT control are optimized for fuel economy and NVH. As a result, the lock-up clutch area has been extended by 300RPM and the fuel economy has been improved by about 1%, while the NVH characteristics of the vehicle satisfy the targets.
Technical Paper

Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions

2006-10-16
2006-01-3345
In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow which is dominant in current high performance gasoline engines has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to understand the effect of the tumble ratio on the part load performance and optimize the tumble ratio for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble ratio was measured, compared, and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV (Particle Image Velocimetry), and 3-Dimensional PTV (Particle Tracking Velocimetry). Engine dynamometer test was also conducted to find out the effect of the tumble ratio on the part load performance.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Technical Paper

The Effect Of Intake System Geometry On The Sensitivity Of Hot Film Type Air Flow Meter

2003-05-19
2003-01-1802
The air fuel ratio of current gasoline engine is mostly controlled by various air flow meters. When CVVT (Continuous Variable Valve Timing) device is applied to gasoline engine for higher engine performance, MAP (Manifold Absolute Pressure) sensor can not be applied anymore due to intake valve motion. Therefore HFM (Hot film airflow meter) is used for measuring the intake air flow instead of MAP sensor. Usually HFM has a little sensitivity in flow direction, therefore reverse flow from engine to air cleaner can not be measured. Also, HFM maker request enough straight duct length nearly 10 times of a duct diameter making a fully developed flow. But, most vehicles have no enough space to install such an intake system in engine room. Thus the inserted duct was applied to confirm the stable fully developed flow in air duct. The various duct configurations in front of HFM effect on the sensitivity of HFM.
Technical Paper

The Development of a NOx Reduction System during the Fuel Cut Period for Gasoline Vehicles

2019-04-02
2019-01-1292
Generally, vehicles do not need power during deceleration. Therefore, the fuel efficiency can be improved by stopping the fuel injection in this period. However, when the fuel cut is activated, NOx is emitted immediately after fuel cut. During the fuel cut period, a large amount of fresh air flows into the catalytic converter installed on a vehicle since there is no combustion. Thus, the catalytic materials are converted into an oxidizing atmosphere. As a result, NOx purification performance of the catalyst deteriorates, and eventually NOx is emitted when combustion restarts. The quantity of NOx in this period is relatively small. However, in case of increasing fuel cuts, emission problem could arise. Therefore, in order to meet the stringent regulation such as LEV III-SULEV20 or 30, the number of fuel cuts need to be limited. The problem is that this strategy leads to a disadvantage of fuel efficiency.
Technical Paper

The Development of Lab-Simulation Test to Accelerate the Durability Validation of Engine Mounting and Wiring Harness

2003-03-03
2003-01-0949
With the advent of cars with computerized engines, drivers sometimes suffer discomfort with “check engine” light problem, and as a result, insist on increasing levels of reliability in their cars. Hence, reliability of the wiring harness has become a very important automotive design characteristic. On one hand, the more secure an engine mounting system is, the more stable the engine wiring harness is. In order to enhance their durability, car manufacturers need to perform many validation tests during the development phase which involves a lot of time and cost. In this study, a newly developed lab-simulation test is proposed to qualify the design of engine mounting and engine wiring early in the design cycle and reduce time and expense. The lab-simulation test has contributed to a significant cost and time reduction and has shown good correlation to the original proving ground test.
Technical Paper

The Development of Gear Tooth Micro Geometry Analysis Method for the Transmission Gear Noise Robustness

2019-03-25
2019-01-1414
Transmission error has been well known as the main source of excitation about transmission gear whine noise. To minimize transmission error in the gear system, various analysis methods have been studied and applied for long time. Many researchers were focused on gear micro geometry to achieve the low level of transmission error. But, if the gear is misaligned by several factors such as clearance and manufacturing tolerance error, then the gear noise can rapidly and unexpectedly be increased. To overcome this problem, this new analysis method has been developed and introduced. A transmission system simulation model was constructed, which considers various factors of transmission components such as clearance, stiffness and so on. The deformation and vibration characteristics of finite element models were validated by making comparison with frequency response function experiment.
Technical Paper

The CAE Analysis of a Cylinder Head Water Jacket Design for Engine Cooling Optimization

2018-04-03
2018-01-1459
Hyundai's new engine is developed which optimize the cooling efficiency for knocking improvement and friction reduction. The cooling concepts for this purpose are 1) equalizing the temperature among cylinders by flow optimization, 2) cooling the required area intensively, 3) adopting ‘active flow control’ and 4) enlarging fuel economy at high speed range. In order to realize the cooling concept, 1) cross-flow, 2) compact water jacket & exhaust cooling, 3) flow control valve and 4) cylinder head with integrated exhaust manifold are considered. Improvement of knocking and friction reduction by increased cooling water temperature makes fuel efficiency possible. On the other hand, in order to strengthen the cooling around the combustion chamber and to reduce the deviation among the combustion chamber of cylinders, it is required to design the head water jacket shape accordingly.
Technical Paper

The Analysis of Crack Mechanism and Estimate of Life Time by the Vibration Measurement of Stainless Exhaust Manifold in Firing Condition

2013-10-14
2013-01-2643
SUS exhaust manifold is weaker than cast iron in aspect of high temperature vibration. So as to improve reliability of SUS exhaust manifold and get over gas temperature limit, exhaust manifold vibration mode and level has to be decreased. And because of error and limit of conventional modal analysis, we measured vibration mode and level of SUS exhaust manifold directly in engine firing condition. To measure vibration of hot parts(600∼800°C) in engine, we used special cooling device at base of accelerometer. Thus we developed analysis method of SUS exhaust manifold crack mechanism. We came to know the accurate vibration mode and level of SUS exhaust manifold in hot condition. Besides, we found out in proportion as vibration level increases endurance life decreases.
Technical Paper

The Aesthetic Analysis of Sporty Design Factors in a Sports Car

2008-04-14
2008-01-0563
The design of a product is becoming more important and it affects product preference and buying decision. The objectives of this study are first to determine the major elements affecting the feeling of exterior design from aesthetic engineering point of view, and then to extract the highly correlated design factor within the experimental result. Firstly, the buying preference is highly affected by the dynamic and elegant factors. Through deepening analysis using only 2-door type car, the ‘Cowl and Deck Point Angle * Overall Length / Overall Height’ factor is highly positive correlated, and the ‘Rear Overhang’ factor is highly negative correlated with buying preference. There are three special features of a sports car; firstly, stable (long wheel base) and aggressive (lean towards the front) design makes consumers feel dynamic. Secondly, the consumers prefer modern and sedan-like coupe design. Thirdly, sleek design line and consistent character line are preferred.
Technical Paper

Test Method Development and Understanding of Filter Ring-off-Cracks in a Catalyzed Silicon Carbide (SiC) Diesel Particulate Filter System Design

2008-04-14
2008-01-0765
As the use of diesel engines increases in the transportation industry and emission regulations tighten, the implementation of diesel particulate filter systems has expanded. There are many challenges associated with the design and development of these systems. Some of the key robustness parameters include regeneration, efficiency, fuel penalty, engine performance, and durability. One component of durability in a diesel particulate filter (DPF) system is the filter's ability to resist ring-off-cracking (ROC). ROC is described as a crack caused primarily by thermal gradients, differentials, and the resulting stresses within the DPF that exceed its internal strength. These cracks usually run perpendicular to the substrate flow axis and typically result in the breaking of the substrate into separate halves.
Technical Paper

Study on Sound Insulation Performance of Vehicle Dash Reinforcements

2014-06-30
2014-01-2085
Dash panel is the most important path of structure-borne and air-borne interior noise for engine-driven vehicles. Reinforcements, which are added to dash panel, are mainly designed in order to suppress the structure-borne noise contribution from the dash panel. However, the effects of dash reinforcements do not seem clear in the viewpoint of air-borne noise. In this paper, the insulation performance of a dash structure with spot-welded reinforcements is studied through several STL (Sound Transmission Loss) tests and STL simulations. The results of this study could be utilized for increasing the sound insulation performance of vehicle body structure.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Journal Article

Robust Development of Electric Powertrain NVH for Compact Electric SUV

2020-09-30
2020-01-1503
Electric vehicles (EV’s) present new challenges to achieving the required noise, vibration & harshness performance (NVH) compared with conventional vehicles. Specifically, high-frequency noise and unexpected noise phenomenon, previously masked by the internal combustion engine can cause annoyance in an EV. Electric motor (E-motor) whine noise caused by electromagnetic excitation during E-motor operation is caused by torque ripple and radial excitation. Under high speed and high load operating conditions, the overall sound level may be low, however high frequency whine noise can impair the vehicle level NVH performance. An example of a previously masked unexpected noise phenomenon is a droning noise that can be caused by manufacturing quality variation of the spline coupling between the rotor shaft of the E-motor and the input shaft of the reducer. It is dominated by multiple higher orders of the E-motor rotation frequency.
Journal Article

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

2020-09-30
2020-01-1570
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53x0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators.
X