Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A Case Study on the Improvement of Idle Quality of an SUV Car with DI Diesel Engine

2003-05-05
2003-01-1464
With its advantage on the economic and environmental reason the preference of vehicles with diesel engine is growing in the domestic market as well as European market. And automobile makers are enthusiastic in the development of diesel engine vehicles with more comfortable interior atmosphere in order to meet consumers' requirements. Generally, when compared with gasoline engine, diesel engine has much bigger vibratory input to the mounting structure and produces higher level in interior noise and body vibration. In this paper, the improvement of NVH quality at the idle state of an SUV car with DI diesel engine has been achieved through tuning engine mounts based on TPA (Transfer Path Analysis) for low frequency vibration and interior booming noise.
Technical Paper

A Development of Spindle Drive Power Trunk Lid System with Optimizing Operation Noise

2022-03-29
2022-01-0759
The power trunk lid system is a device that automatically opens and closes the trunk lid by motor, for the purpose to improve user’s convenience. This technology was applied only to high-end large cars such as Equus and Genesis. But as preference for high convenience features increases, the scope of application is gradually expanding to semi-large and mid-sized cars. Therefore, the necessity of securing profitability through cost reduction was emerged, and it made us to develop the power trunk lid system by spindle drives. Compared to the conventional swing arm drive type, the spindle drive type may achieve cost savings, lightness and easy of assembly by optimizing the required motor specifications. However, since it uses a planetary gear with high gear ratio and the high rotation speed of the motor, operating noise is relatively large.
Technical Paper

A Dynamic GUI Platform for Bluetooth Automotive Application Voice Communication Package

2018-04-03
2018-01-0023
In this paper, a reconfigurable object-oriented simulator is proposed to analyze the performance of Bluetooth Voice Communication Package (VCP) for telecom purposes like hands-free vehicular communication. It consists of a graphical user interface (GUI) for research or validation engineers to investigate system specific performance. For example, a research engineer can utilize this GUI to analyze a system performance using different noise reduction filtering techniques in vehicular hands-free applications. Also, a validation engineer can utilize this GUI to evaluate vehicular Bluetooth audio quality for different vehicles at different driving conditions (e.g. speeds, fan levels, etc.). The proposed Bluetooth VCP model consists of modules like Audio Equalization (EQ), Acoustic Echo Canceller (AEC), and Noise Suppression (NS). This dynamic GUI platform provides the scope to add and analyze new proposed filtering techniques.
Technical Paper

A Novel Method Predicting the Influence of Absorption Material on the Sound Quality of Interior Noise

2017-06-05
2017-01-1885
This paper presents a novel method predicting the variation of sound quality of interior noise depending on the change of the proprieties of absorption materials. At the first, the model predicting the interior noise corresponding to the change of the absorption material in engine room is proposed. Secondly the index to estimate the sound quality of the predicted sound is developed. Thirdly the experimental work has been conducted with seven different materials and validated the newly developed index. Finally, this index is applied for the optimization of absorption material to improve the sound quality of interior noise in a passenger car.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study for Improving the Acoustic Performance of Dash Isolation Pad Using Hollow Fiber

2013-03-25
2013-01-0101
Usually, fibrous materials with porosity can dissipate the energy of the sound wave penetrating them, so can be the useful sound absorbing materials to reduce the noise in the vehicle. The fibrous materials have been used for the various types of automotive components as the sound absorbing materials, which can be placed close to the noise source, in the noise paths and near the receiver such as passengers. Although all materials can absorb a little amount of sound energy, the term “acoustical material” has been primarily applied to those materials that can provide the higher sound absorption performance above the ordinary levels. One of the examples of fibrous acoustic materials for automotive components is the sound absorbing felt composed of the fibers which have the several characteristics such as the material type, the cross-sectional shape and the fiber density (can be expressed as denier) related to the sound absorbing performance.
Journal Article

A Study of Wheel Guards for Reduction of High Frequency Road-Noise

2015-04-14
2015-01-1309
This Study describes about the development of new concept' rear wheel guards for the reduction of Road Noise in the passenger vehicles. The new wheel guards are proposed by various frequency chamber concept and different textile layers concept. Two wheel guards were verified by small cabin resonance and vehicle tests. Through new developing process without vehicle test, Result of road noise will be expected if this concepts and materials of wheel guard are applied into automotive vehicle. As this concept consider tire radiation noise frequency and multilayers sound control multilayers, 2 concepts reduced road noise from 0.5 to 1.0dB. The proposed method of part reverberant absorption is similar to results of vehicle tests by part absorption index. Furthermore, optimization of frequency band in wheel guards will reduce more 0.5 dB noises. As a result of the application of Aimed Helmholtz and Multilayers concept, this paper classifies reduction of the road noise, cost and weights.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

A Study of the Half Order Modulation Control for Diesel Combustion Noise by Using Model Based Controller Design

2019-03-25
2019-01-1416
This model based investigation is carried out in order to control the half order modulation for diesel engines using by virtual calibration approach and proposes a feedback control strategy to mitigate cylinder to cylinder imbalance from asymmetric cylinders torque production. Combustion heat release analysis is performed on test data to understand the root cause of observed cylinder to cylinder pressure variations. The injected fuel variations are shown to cause the observed pressure variations between cylinders. A feedback control strategy based on measured crank shaft position is devised to control the half order modulation to balance the combustion pressure profile between cylinders. This control strategy is implemented in Simulink and is tested in closed-loop with the diesel engine model in AMESim. The closed-loop performance indicates that the half order modulation is considerably improved while having minimal impact on the fuel consumption.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

A Study on the Acoustic Simulation for the Components of an Intake System

2011-05-17
2011-01-1520
The reduction of intake noise is a very important factor in controlling the interior noise levels of vehicles, particularly at low and major engine operating speeds. A vehicle intake system generally consists of air cleaner box, hose, duct, and filter element. Also, resonators and porous duct are included, being used to reduce intake noise. For more accurate estimation of the transmission loss (TL), it seems important to develop a CAE model that accurately describes this system. In this paper, simple methods, which can consider the effects of filter element and vibro-acoustic coupling, are suggested which could remarkably improve estimation accuracy of the TL. The filter element is assumed as equivalent semi-rigid porous materials characterized by the flow resistivity defined by the pressure drop, velocity, and thickness.
Technical Paper

A Study on the Development Process of a Body with High Stiffness

2005-05-16
2005-01-2464
Design optimization of a vehicle is required to increase a product value for noise and vibration performances and for a fuel-efficient car. This paper describes the development process of a high stiffness and lightweight vehicle. A parameter study is carried out at the initial stage of design using the mother car, and a design guide with a good performance is achieved early prior to the development of the proto car. Influences of body stiffness based on the relative weight ratio of the floor and side structures are analyzed. Results show that bending and torsional stiffness has a significant effect on weight distribution ratio. Influences of the distribution of side joint stiffness are analyzed through numerical experiments. Results reveal that the stiffness difference between the upper and lower parts should be small to increase the stiffness of a body.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Technical Paper

A Study on the Optimization of Body Structure for Rattle Noise by Exciting Woofer Speakers

2009-05-19
2009-01-2110
With the recent development of technologies for interpreting vibration and noise of vehicles, it has become possible for carmakers to reduce idle vibration and driving noise in the phase of preceding development. Thus, the issue of noise generation is drawing keen attention from production of prototype car through mass-production development. J. D. Power has surveyed the levels of customer satisfaction with all vehicles sold in the U.S. market and released the Initial Quality Study (IQS) index. As a growing number of emotional quality-related items are added to the IQS evaluation index, it is necessary to secure a sufficiently high quality level of low-frequency speaker sound against rattle noise. It is required to make a preceding review on the package tray panel, which is located at the bottom of the rear glass where the woofer speakers of a passenger sedan are installed, the door module panel in which the door speakers are built.
Technical Paper

A Study on the Vehicle Body Effect on Brake Noise

2016-09-18
2016-01-1917
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. Recently, the field claims regarding the creep groan noise are increasing. So far, creep groan noise has been improved by means of chassis modification the transfer system. But vehicle body the response system does not. In this paper, the effect between vibration characteristics of vehicle body, creep groan noise was analyzed. Then presented analysis method for vehicle body effect regarding creep groan noise.
Journal Article

A Systematic Approach to Engine Sound Design for Enhancing Sound Character by Active Sound Design

2017-06-05
2017-01-1756
This paper presents a systematic approach to interior engine sound design for enhancing sound character of car interior sound effectively. Nowadays an active noise control technology is widely used in vehicle industry. Particularly, an active sound design (ASD) technique using vehicle’s audio system for controlling interior sound due to powertrain has become a general method to improve sound quality or character. The ASD system using speakers has the advantage of creating various sounds relatively easy. In this study, the novel systematic approach is proposed to guide the efficient design of powerful and pleasant acceleration sound by order spectrum analysis. At first, primary attributes of powerful and pleasant sound were analyzed and sound concept was derived. Secondly, the optimal linearity and the level envelope of firing order were derived by subjective evaluation.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Technical Paper

A Trend Line Analysis of the Insertion Loss Test Data and Application to Sound Transmission Loss Simulation

2022-06-15
2022-01-0959
In this paper, an application process is studied at which the insertion loss (IL) test data of sound insulating parts or noise control treatments are utilized for the sound transmission loss (STL) simulation of the trimmed dash structure. The considered sound barrier assemblies were composed of a felt layer, a mass layer, and a decoupler layer. Flat samples of sound barrier assemblies with several different thicknesses were prepared, and ILs of them were measured by using a sound transmission loss facility. Flat samples were assumed to have mass-spring-mass resonance frequencies. The mass was set as the area mass of the sound barrier layer of the felt layer and the mass layer. The spring constant of the decoupler layer was assumed as the multiplication of that of an air spring and a spring correction factor.
X