Refine Your Search

Topic

Search Results

Technical Paper

Vision Based Path-Following Control System Using Backstepping Control Methodology

2008-04-14
2008-01-0202
This paper describes an automated path following system using vision sensor. Lateral control law for path following is especially underlined which is developed by using the backstepping control design methodology. To establish the proposed control system, the lateral offset to the reference path, the heading angle of vehicle relative to tangent line to the path, and path curvature are required. Those inputs to the controller have been calculated through Kalman filter which is frequently adopted for the purpose. The lane mark detection has been achieved in an ECU (Electric Control Unit) platform with vision sensor. The yaw rate and side-slip angle also needed in the controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speeds, experiment has been conducted on a proving ground having straight and curve sections with the curvature of about 260m.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Tuning of Suspension Parameters to Improve Dynamic Performance of Passenger Car

1987-11-08
871179
The purpose of this paper is an attempt to make a good compromise between ride and handling without deteriorating each other. Compromise between ride and handling has been a problem for suspension designer. Attempts are made by varing suspension parameters. Effects of each combination has been tested with basic ride and handling test methods. For ride to maintain a constant natural frequency through all load range was a primary target. And for handling to get adequate roll angle at 0.5g lateral acceleration was a target. In conclusion, combination of polyurethane suspension bump and normal rear spring was proved to be able to provide the best compromise, low cost, light weight and better performance. This also showed polyurethane bumper could carry out spring aids successfully.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Journal Article

The Role of Copper on the Friction and Wear Performance of Automotive Brake Friction Materials

2011-09-18
2011-01-2367
Copper has been regarded as one of the indispensable ingredients in the brake friction materials since it provides high thermal diffusivity at the sliding interface. However, the recent regulations against environmentally hazardous ingredients limit the use of copper in the commercial friction material and much effort has been made for the alternatives. In this work, the role of the cuprous ingredients such as copper fiber, copper powder, cupric oxide (CuO), and copper sulfide (CuS) are studied using the friction materials based on commercial formulations. The investigation was performed using a full inertial brake dynamometer and 1/5 scale dynamometer for brake performance and wear test. Results showed that the cuprous ingredients played a crucial role in maintaining the stable friction film at the friction interface, resulting in improved friction stability and reduced aggressiveness against counter disk.
Technical Paper

The Procedure for Improving R&H Performance of the New 2010 Hyundai Sonata by Modal Parameter Modification of Its Body

2010-04-12
2010-01-1136
Various deformation shapes of the vehicle body were investigated for the purpose to establish vehicle body's performance criteria which correlates well to handling performance and ride comfort. Using CAE tool, the dynamic behavior of a structure by its modal parameter can be described instead of by its nodes and elements. Each modal characteristic in a dynamic system is reduced by its modal stiffness, its modal mass and its damping parameter in the model. This technology offers not only computational efficiency but also parametric model enabling easy what-if simulation. This reduced model can be obtained by modal test as well as simulation of full FE model. It was also investigated that which mode is sensitive to ride or handling performance using the parameterized model. The body stiffness of the brand new 2010 SONATA was improved on reference to the sensitivity analysis. The ride and handling performance of the 2010 SONATA were verified by computer simulation and vehicle field test
Technical Paper

The Characteristics of TPE for Skin of Automotive Instrument Panel

2002-03-04
2002-01-0313
In order to replace PVC with TPO as I/P skin layer of invisible PAB, the elongation behavior, vacuum thermoforming, thermal, light resistance and low temperature PAB deployment of TPO were investigated. With the elongation properties; 50cN ↑ melt strength, 300mm/s ↑ breaking speed, 200s ↑ breaking time, TPO was vacuum-formed well like PVC. The thermal and light resistances of TPO were superior to PVC. In terms of low temperature airbag test, PVC was fractured with the brittle behavior during the deployment. TPO, however, showed the ductile fracture. And also when TPO was used for PAB cover, the elongation ratio of TPO was also important criterion for the normal break without any interference to I/P part, outside of PAB. The 300∼500% elongation ratio was most preferable.
Technical Paper

The COANDA Flow Control and Newtonian Concept Approach to Achieve Drag Reduction of Passenger Vehicle

2001-03-05
2001-01-1267
In order to reduce total drag during aerodynamic optimization process of the passenger vehicle, induced drag should be minimized and pressure drag should be decreased by means of applying streamlined body shape. The reduction of wake area could decrease pressure drag, which was generated by boundary layer separation. The induced drag caused by rear axle lift and C-pillar vortex can be reduced by the employing of trunk lid edge and kick-up or an optimized rear spoiler. When a rear spoiler or kick-up shape was installed on the rear end of a sedan vehicle, drag was reduced but the wake area became larger. This contradiction cannot be explained by simply using Bernoulli’s principle with equal transit or longer path theory. Newtonian explanation with COANDA effect is adopted to explain this phenomenon. The relationships among COANDA effect, down wash, C-pillar vortex, rear axle lift and induced drag are explained.
Technical Paper

The Analysis of Crack Mechanism and Estimate of Life Time by the Vibration Measurement of Stainless Exhaust Manifold in Firing Condition

2013-10-14
2013-01-2643
SUS exhaust manifold is weaker than cast iron in aspect of high temperature vibration. So as to improve reliability of SUS exhaust manifold and get over gas temperature limit, exhaust manifold vibration mode and level has to be decreased. And because of error and limit of conventional modal analysis, we measured vibration mode and level of SUS exhaust manifold directly in engine firing condition. To measure vibration of hot parts(600∼800°C) in engine, we used special cooling device at base of accelerometer. Thus we developed analysis method of SUS exhaust manifold crack mechanism. We came to know the accurate vibration mode and level of SUS exhaust manifold in hot condition. Besides, we found out in proportion as vibration level increases endurance life decreases.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Technical Paper

Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe

2013-04-08
2013-01-1211
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
Technical Paper

Solution for the Torque Steer Problem of a Front-wheel Drive Car with a High-torque Engine in Vehicle Development Stages

2007-08-05
2007-01-3656
This paper describes a torque steer reduction process for a front-wheel drive car with a high torque engine at the initial stage of vehicle development. Literature reviews for the reduction process and vehicle integration tradeoffs among chassis components, driveline components, and loading condition are included. Drive shaft angle and its stiffness, differential gear stiffness, and power train mount, and vehicle weight distribution are mainly considered. In addition, wheel alignment data such as kingpin offset, kingpin inclination, camber angle, ride height, and dynamic tire radius are also discussed to solve the torque steer problem. This paper introduces an example solution to improve the torque steer during vehicle development stage. In that case, the vehicle parameters should be considered the factors to achieve many requirements. In spite of that restriction of alteration, the result of improvement became better than that of its competitor.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Technical Paper

New 1.4ℓ SI Engine Development with the Aluminum Thermal Spray Coated Counter Spiny Thin-Wall Cast Iron Liner

2013-10-14
2013-01-2641
For the lightweight and compact cylinder block, new cast iron liner was developed, which has counter spiny form on the out side of the liner. Additionally, the outer surface was spray-coated with Aluminum in order to enhance the heat conductivity and to increase the grip force between the liner and the block. Without any redesign of cylinder block or crankshaft, the displacement of the engine could be increased from 1.25ℓ to 1.4ℓ by adapting this new liner only. This liner enabled to expand the engine displacement without both great dimension changes and production facility changes.
Technical Paper

Microstructure and Tribological Behavior of CrN-Cu Nanocoatings Deposited by PVD Systems

2016-04-05
2016-01-0492
The present study focused on CrN-Cu nanocoatings composed of nano-meter grains with CrN, Cr and Cu functioning low-friction, anti-wear and heat resistance. The coatings were synthesized by hybrid PVD including metal arc source, magentron sputter source and ion-gun source. Although Cu has low hardness, the hardness of CrNCu is not declined because it was composed of below 20nm sized grains of CrN, Cr, and Cu. However, CrN-Cu had lower friction than CrN owing to Cu’s low shear strength. CrN-Cu films optimized using the Reaction Surface Method (RSM) showed the excellent tribological behavior and low coefficient of friction compared with DLC. The tribological properties of the Cr-Cu-N demonstrated superior wear resistance and low friction at normal and high temperature conditions. The CrN-Cu nanocoatings can be used for the downsizing automotive engines working at severe tribological conditions.
Technical Paper

Improvement of Tire Development Process Through Study of Tire Test Procedure and Vehicle Correlation

2018-04-03
2018-01-1337
The tire is the vital element in vehicle dynamics, as its contact patch transmits all forces and moments to the ground (accelerating, braking, cornering, rolling).Over the recent decades tire development for passenger cars has been continuously improved and optimized in order to achieve a good overall vehicle performance in R&H that is in balance with all other tire performances (Wear, Durability, NVH, RR, Miles). This general development process has to be suitable for various vehicle types from regular passenger cars over eco-friendly hybrid or electric vehicles to high performance sport cars. The balance between Ride and Handling performance is further adjusted to local customer preferences that are usually distinguished by markets (US, EU, Asia). The tire development process, which is embedded in the overall vehicle development, is usually realized in a mutual collaboration between OEM and tire supplier.
Technical Paper

Improvement of Fatigue Strength of Automatic Transmission Gear by Developing Controlled Rolled Alloy Steel

2000-03-06
2000-01-0614
The controlled rolling process has been introduced to increase strength and toughness of alloy steels for the application of transmission gear. Cr-Mo alloy steel containing 0.02% Nb was controlled rolled in the temperature range of 870-970°C, showed fine austenite grain size, about ASTM No.11, resulted from the effects of recrystallization and Nb(C,N) precipitation. To investigate the effects of grain refinement on mechanical properties, several tests were conducted for the newly developed controlled rolled steel and conventional Ni-Cr-Mo alloy steel after carburizing. The new steel showed 2.1 times higher pitting resistance than the conventional steel. Fatigue limits of new and conventional steels were 950 and 930 MPa respectively. Charpy impact energy of new steel was improved about 35% compared with the conventional steel. Consequently, the pinion gear from the new steel instead of conventional one showed enhanced performance, especially pitting resistance, in dynamometer test.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Technical Paper

Experimental Study on DGPS/RTK Based Path Following System Using Backstepping Control Methodology

2007-08-05
2007-01-3579
This paper mainly focuses on a lateral control law for pre-given path following which is developed by using the backstepping control design methodology. The position information of the vehicle is obtained by Real Time Kinematic DGPS, and the yaw rate and side-slip angle used in controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speed and various path curvature conditions, the results are given through experiments which are executed on proving ground especially designed for high maneuvering test of which minimum radius of curvature is about 60 m.
X