Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Characterization of the Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-0834
The physical behavior of the combustion process in a jet-guided direct injection spark ignition engine has been investigated with three different measurement techniques. These are flame visualization by use of endoscopy, ion-current sensing at 16 different locations in the combustion chamber and the estimation of the flame temperature as well as soot concentration based on multi-wavelength-pyrometry. The results of all these measurement techniques are in good agreement between each other and give a coherent picture of the physical behavior of the combustion process and make it possible to characterize the main influence parameters on combustion. This serves as a basis for validation and improvement of simulation tools for the engine thermodynamics and combustion.
Technical Paper

Characterization of Mixture Formation in a Direct Injected Spark Ignition Engine

2001-05-07
2001-01-1909
We have performed simulations and experiments to characterize the mixture formation in spray-guided direct injected spark ignition (DISI) gasoline engines and to help to understand features of the combustion process, which are characteristic for this engine concept. The 3-D computations are based on the KIVA 3 code, in which basic submodels of spray processes have been systematically modified at ETH during the last years. In this study, the break-up model for the hollow-cone spray typical for DISI engines has been validated through an extended comparison with both shadowgraphs and Mie-scattering results in a high-pressure-high-temperature, constant volume combustion cell at ambient conditions relevant for DISI operation, with and without significant droplet evaporation. Computational results in a single-cylinder research engine have been then obtained at a given engine speed for varying load (fuel mass per stroke), swirl and fuel injection pressure.
Technical Paper

Characterization and Phenomenological Modeling of Mixture Formation and Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-1138
A phenomenological model for heat release rate predictions taking into account the characteristic processes inside a direct injection gasoline engine is presented. Fuel evaporation and preparation as well as the specifics of premixed and mixing controlled combustion phase are regarded. Only a few model constants need to be set which have been fit empirically for the application in a one-cylinder research engine. This jet guided direct injection gasoline engine employs a modern common-rail injection system and runs predominantly in stratified mode. The model allows the prediction of the influence of numerous parameter variations, e.g. injection-ignition phasing, load, engine speed, swirl, etc. on the combustion process. Furthermore efficient simulations can be carried out without using expensive three-dimensional CFD (computational fluid dynamics) calculations.
X