Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Calibration of Torque Structure and Charge Control System for SI Engines Based on Physical Simulation Models

A physics-based simulation program developed by IAV is used to calibrate the torque structure and cylinder charge calculation in the electronic control unit of SI engines. The model calculates both the charge cycle and combustion phase based on flow mechanics and a fractal combustion model. Once the air mass in the charge cycle has been computed, a fractal combustion model is used for the ongoing calculation of cylinder pressure and temperature. The progression of cylinder pressure over the high and low-pressure phases also provides information on engine torque. Following the engine-specific calibration of the model using elemental geometric information and reduced test bench measurements, the physical engine properties can be simulated over the operating cycle. The calibrated model allows simulations to be carried out at all operating points and the results to be treated as virtual test bench measurements.
Technical Paper

A Highly Efficient Simulation-Based Calibration Method Exemplified by the Charge Control

A physically based simulation program developed by IAV makes a notable reduction of test bed measurements for the calibration of the cylinder charge calculation possible. Based upon geometric engine parameters and camshaft profiles, the cylinder charge is calculated from thermodynamic relationships taking into account the contribution of residual gas. After successful engine-specific calibration of the simulation model on the basis of a reduced set of test bed measurements, it is possible to calculate the cylinder air mass over the entire range of valve timing settings and operating points (engine load and speed). The simulation-generated “virtual” measurements can then be used for calibration of the control unit software over the entire operating range.