Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

2019-04-02
2019-01-0984
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
Technical Paper

Investigations on Ventilation Strategies for SI Cylinder Deactivation Based on a Variable Valve Train

2016-10-17
2016-01-2346
Advanced SI engines for passenger cars often use the cylinder deactivation technology for dethrottling and thus achieving a reduction of fuel consumption. The gas exchange valves of the deactivated cylinders are closed permanently by a zero lift of the cams. The solutions for cylinder deactivation can vary in the kind of gas composition included in the deactivated cylinders: charge air, exhaust gas or vacuum. All these strategies have in common the frequent loss of captured charge mass from cycle to cycle. Their two-stroke compression-expansion cycle additionally intensifies this phenomenon. Thus, a significant decrease of the minimum cylinder pressure can cause an undesired entry of lubricant into the combustion chamber. The idea was to ventilate the generally deactivated cylinders frequently to compensate the loss of captured cylinder charge mass. The task was to keep the minimum cylinder pressure above a certain limit to prevent the piston rings from a failure.
Technical Paper

Electrification and Automation of Manual Gearbox Technology to Reduce Fuel Consumption and CO2-Emissions of Passenger Cars

2019-01-09
2019-26-0140
To meet the targets of Indian future emission legislation, an electrification and automation of today’s manual transmission technology is necessary. For this reason, IAV invented an electrified automated transmission family, based on well-known manual transmission technology. This low-cost automated manual transmission (AMT) approach is equipped with a 48 V electric machine and can be used as pure electric or hybrid drivetrain. Furthermore, it is possible to realize power shifts by using just one dry friction element. A small number of standard components combined with a low voltage electric machine and an electromechanical actuation system is sufficient to create a maximum of flexibility to meet future emission fleet targets, without having the disadvantageous high costs for a high-voltage electric system. To detect the optimal powertrain configuration, IAV used a unique advance development tool called Powertrain Synthesis.
Technical Paper

Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling

2007-04-16
2007-01-1127
One of the main challenges in developing cost-effective diesel particulate filters is to guarantee a thermally safe regeneration under all possible conditions on the road. Uncontrolled regenerations occur when the soot reaction rate is so high that the cooling effect of the incoming exhaust gas is insufficient to keep the temperature below the required limit for material integrity. These conditions occur when the engine switches to idle while the filter is already hot enough to initiate soot oxidation, typically following engine operation at high torque and speed or active filter regeneration. The purpose of this work is to investigate engine management techniques to reduce the reaction rate during typical failure mode regenerations. A purely experimental investigation faces many difficulties, especially regarding measurement accuracy, repeatability in filter soot loading, and repeatability in the regeneration protocol.
Technical Paper

Calibration Process for SCR Only TIER4i Engine for Construction Equipment

2012-09-24
2012-01-1954
The current legislation for industrial applications and construction equipment including earthmoving machines and crane engines allows different strategies to fulfill the corresponding exhaust emission limits. Liebherr Machines Bulle SA developed their engines to accomplish these limits using SCRonly technology. IAV supported this development, carrying out engine as well as SCR aftertreatment system and vehicle calibration work including the OBD and NOx Control System (NCS) calibration, as well as executing the homologation procedures at the IAV development center. The engines are used in various Liebherr applications certified for EU Stage IIIb, EPA TIER 4i, China GB4 and IMO MARPOL Tier II according to the regulations “97/68/EC”, “40 CFR Part 1039”, “GB17691-2005” and “40 CFR Parts 9, 85, et al.” using the same SCR hardware for all engine power variants of the corresponding I6 and V8 engine families.
X