Refine Your Search

Topic

Author

Search Results

Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
Technical Paper

The Controlled Vane-Type Oil Pump for Oil Supply on Demand for Passenger Car Engines

2002-03-04
2002-01-1319
The oil supply of combustion engines today is typically realized by oil pumps with constant displacement. To secure the operational safety in hot idling these pumps are oversized, what causes low efficiency in most of operating speeds. IAV developed a vane-type oil pump, which allows to infinitely regulate the delivery rate. Because of no oil release over a pressure limiting valve the pump achieves a higher efficiency in a wide range of operation. The design of the theoretical delivery characteristic allows the calculated and particular increase of oil pressure to avoid critical operating conditions and to support hydraulically operated functions as variable camshaft timing.
Technical Paper

Scene Based Safety Functions for Pedestrian Detection Systems

2013-01-09
2013-26-0020
The protection of pedestrians from injuries by accidental collision is a primary focus of the automotive industry and of government legislation [1]. In this area, scientists and developers are faced with a multitude of requirements. Complex scenes are to be analyzed. The wide spectrum of where pedestrians and cyclists appear on the road, weather, and light conditions are just examples. Data fusion of raw or preprocessed signals for several sensors (cameras, radar, lidar, ultrasonic) need to be considered as well. Accordingly, algorithms are very complex. When moving from prototypic environments to embedded systems, additional constraints must be considered. Limited system resources drive the need to simplify and optimize for technical and economic reasons. With all these constraints, how can the safety functions be safe-guarded? This submission considers scene-based methods for the development of vehicle functions from prototype to series production focusing on functional safety.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Modeling Heavy-Duty Engine Thermal Management Technologies to Meet Future Cold Start Requirements

2019-04-02
2019-01-0731
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system. Several different engine technologies are being considered to meet this need. In this study, a 1-D engine model was first used to evaluate several individual control strategies capable of increasing the exhaust enthalpy and decreasing the engine-out NOX over the initial portion of the cold start FTP cycle. The additional fuel consumption resulting from these strategies was also quantified with the model. Next, several of those strategies were combined to create a hypothetical aftertreatment warm-up mode for the engine. The model was then used to evaluate potential benefits of an air gap manifold (AGM) and two different turbine by-pass architectures. The detailed geometry of the AGM model was taken into account, having been constructed from a real prototype design.
Technical Paper

Model Based Exhaust Aftertreatment System Integration for the Development and Calibration of Ultra-Low Emission Concepts

2014-04-01
2014-01-1554
The development and calibration of exhaust aftertreatment (EAT) systems for the most diverse applications of diesel powertrain concepts requires EAT models, capable of performing concept analysis as well as control and OBD system development and calibration. On the concept side, the choice of an application-specific EAT layout from a wide technology selection is driven by a number of requirements and constraints. These include statutory requirements regarding emissions of criteria pollutants and greenhouse gases (GHG), technical constraints such as engine-out emissions and packaging, as well as economic parameters such as fuel consumption, and EAT system and system development costs. Fast and efficient execution of the analysis and multi-criteria system optimization can be done by integrating the detailed EAT models into a total system simulation.
Journal Article

Model Based E85 Cold Start Optimization for DISI Engines

2009-06-15
2009-01-1909
The startability of SI engines, especially of DISI engines, is the greatest challenge when using ethanol blended fuels. The development of a suitable injection strategy is therefore the main engineering target when developing an ethanol engine with direct injection. In order to limit the test efforts of such a program, a vaporization model has been created that provides the quantity of vaporized fuel depending on pressure and on start and end, respectively number and split relation of injections. This model takes account of the most relevant fuel properties such as density, surface tension and viscosity. It also considers the interaction of the spray with cylinder liner, cylinder head and piston. A comparison with test results shows the current status and the need for action of this simulation model.
Technical Paper

Investigations on the Potential of a Variable Miller Cycle for SI Knock Control

2013-04-08
2013-01-1122
A promising combustion technology for DISI downsizing engines is the Miller cycle. It is based on an early intake valve closing for the separation of effective and geometric compression ratio. Therefore IAV has prepared a turbocharged DISI test engine with a high geometric compression ratio. This engine is equipped with the Schaeffler “UniAir” variable valve train in order to investigate a variable Miller cycle valve timing in the turbocharged map area. The goal is to investigate whether and how a rapidly variable Miller cycle can influence the knocking behavior. Therefore its potential for a SI knock control can be evaluated. The investigated parameters in a steady-state engine dyno mode were the intake valve closing timing, the intake camshaft phasing and the ignition timing. A variable intake valve closing Miller cycle strategy, a variable intake camshaft phasing Miller cycle strategy and a state-of-the- art ignition timing strategy have been investigated.
Technical Paper

Investigations on Ventilation Strategies for SI Cylinder Deactivation Based on a Variable Valve Train

2016-10-17
2016-01-2346
Advanced SI engines for passenger cars often use the cylinder deactivation technology for dethrottling and thus achieving a reduction of fuel consumption. The gas exchange valves of the deactivated cylinders are closed permanently by a zero lift of the cams. The solutions for cylinder deactivation can vary in the kind of gas composition included in the deactivated cylinders: charge air, exhaust gas or vacuum. All these strategies have in common the frequent loss of captured charge mass from cycle to cycle. Their two-stroke compression-expansion cycle additionally intensifies this phenomenon. Thus, a significant decrease of the minimum cylinder pressure can cause an undesired entry of lubricant into the combustion chamber. The idea was to ventilate the generally deactivated cylinders frequently to compensate the loss of captured cylinder charge mass. The task was to keep the minimum cylinder pressure above a certain limit to prevent the piston rings from a failure.
Journal Article

Influence of Innovative Diesel-Ethanol Blend on Combustion, Emission and Fuel-Carrying Components

2013-10-14
2013-01-2696
The strong demand for diesel fuel is producing a surplus of gasoline fractions in Europe. Despite new vehicles using less energy, the rising volume of traffic will lead to more diesel being consumed. European legislation demands that renewable fuels cover 10% of energy consumed in the transport sector. The present strategy of dividing biofuels in equal shares between diesel and gasoline does not help to improve this situation. It seems reasonable not only to add FAME but also ethanol to diesel. Unfortunately, fuel blends containing ethanol cannot be used in existing cars without hardware modifications. This is because of ethanol's characteristics and well-known from the experience gathered with gasoline cars. As such, the first part of this study investigates material compatibility, focusing on corrosion and changes to the mechanical properties of the materials used in diesel engines.
Technical Paper

In-cylinder Flow Field Measurement with Doppler Global Velocimetry in Combination with Droplet Distribution Visualization by Mie Scattering

2009-04-20
2009-01-0652
Flow fields and fuel distribution play a critical role in developing the combustion process inside the cylinders of piston engines. This has prompted the development of measurement and diagnostic capabilities including laser techniques like Doppler Global Velocimetry (DGV). The paper provides an overview of the basics of DGV and the type of results that can be obtained. It also includes a short comparison to Particle Image Velocimetry (PIV) which is a popular alternative method. Furthermore, it is shown that DGV can be used simultaneously in combination with droplet distribution visualization inside cylinders based on Mie scattering.
Technical Paper

Hybrid Phenomenological and Mathematical-Based Modeling Approach for Diesel Emission Prediction

2020-04-14
2020-01-0660
In order to reduce the negative health effects associated with engine pollutants, environmental problems caused by combustion engine emissions and satisfy the current strict emission standards, it is essential to better understand and simulate the emission formation process. Further development of emission model, improves the accuracy of the model-based optimization approach, which is used as a decisive tool for combustion system development and engine-out emission reduction. The numerical approaches for emission simulation are closely coupled to the combustion model. Using a detailed emission model, considering the 3D mixture preparation simulation including, chemical reactions, demands high computational effort. Phenomenological combustion models, used in 1D approaches for model-based system optimization can deliver heat release rate, while using a two-zone approach can estimate the NOx emissions.
Technical Paper

Homogeneous Diesel Combustion with External Mixture Formation by a Cool Flame Vaporizer

2006-10-16
2006-01-3323
The homogeneous Diesel combustion is a way to effect a soot and nitrogen oxide (NOx) free Diesel engine operation. Using direct injection of Diesel fuel, the mixture typically ignites before it is fully homogenized. In this study a homogeneous mixture is prepared outside of the combustion chamber by a Cool Flame Vaporizer. At first the specification of the vaporizer is given in this paper. To determine the composition of the vaporizer gas an analysis using gas chromatography/mass spectroscopy (GC/MS) was made. The results give an idea of the effects on engine combustion. Followed by, the vaporizer was adapted to a single-cylinder Diesel engine. To adapt the engine's configuration regarding compression ratio and inlet temperature range a zero dimensional engine process simulation software was utilized. The engine was run in different operating modes.
Technical Paper

Holistic Evaluation of CO2 Saving Potentials for New Degrees of Freedom in SI Engine Process Control Based on Physical Simulations

2018-09-10
2018-01-1654
Specific shifting of load points is an important approach in order to reduce the fuel consumption of gasoline engines. A potential measure is cylinder deactivation, which is used as a study example. Currently CO2 savings of new concepts are evaluated by dynamic cycles simulations. The fuel consumption during driving cycles is calculated based on consumption-optimized steady-state engine maps. Discrete load point shifts occur as shifts within maps. For reasons of comfort shifts require neutral torque. The work of deactivated cylinders must be compensated by active cylinders within one working cycle. Due to the larger time constant of the air path the air charge must be increased or decreased in order to deactivate or activate cylinders without affecting the torque. A working-cycle-resolved, continuously variable parameter is prerequisite for process control. Manipulation of ignition timing enables a reduction of efficiency and gained work.
Technical Paper

Holistic Engine and EAT Development of Low NOX and CO2 Concepts for HD Diesel Engine Applications

2020-09-15
2020-01-2092
The latest legislative tendencies for on-highway heavy duty vehicles in the United States such as the feasibility assessment of low NOX standards of CARB or EPA’s memorandum forecast further tightening of the NOX emissions limits. In addition, the GHG Phase 2 legislation and also phased-in regulations in the EU enforce a continuous reduction in CO2 emissions resp. fuel consumption. In order to meet such low NOX emission limits, a rapid heat-up of the exhaust after-treatment system (EATS) is inevitable. However, the required thermal management results in increased fuel consumption, i.e. CO2 emissions as shown in numerous previous works also by the authors. A NOX-CO2 trade-off for cumulative cycle emissions can be observed, which can be optimized by using more advance technologies on the engine and/or on the EATS side.
Technical Paper

Fundamental Investigations about Heated Fuel Injection on SI Engines

2018-05-30
2018-37-0003
Mixture formation in gasoline direct-injection engines is largely determined by the quality of injection. Injection systems with a wide range of layouts are used today in enhancing spray quality. As parameters, the pressure and temperature of injected fuel play a crucial part in defining quality. The effect increasing pressure has on the quality of spray is basically known. So are ways of applying this process to gasoline fuel. The effect of massively increasing the temperature of injected fuel - to the point of reaching supercritical conditions - in contrast, is not known in any detail. For this reason, the following paper focuses attention on examining the fundamental influence of increasing fuel temperature from 25 °C to 450 °C on the spray behavior of a high-pressure injector with a GDI nozzle. Combining relevant levels of pressure and temperature, discussion also turns to supercritical fuel conditions and their effects on spray behavior.
Journal Article

Emission and Ignition Effects of Alternative Fuels at Conventional and Premixed Diesel Combustion

2010-04-12
2010-01-0870
The growing availability of different biofuels and synthetic fuels is leading to increased diversity of automotive fuels. Understanding how fuel properties affect combustion and how engine calibration strategies can compensate for variations in fuel composition is crucial for ensuring proper engine operation in this world of increased fuel diversity. This study looks at the ability to compensate for wide changes in cetane quality. Four different fuels with variations in cetane number, volatility and composition have been tested in a single cylinder engine and compared to diesel fuel. The selected operating conditions represent the entire engine map of a passenger car diesel engine. In part load the effects were investigated for conventional and premixed Diesel combustion. The results show that part load operation is especially relevant for the detection and compensation of varying fuel properties and that, depending on engine load, different control strategies have to be applied.
Technical Paper

Effects of Charge Motion Characteristics on Engine Variables such as Emission Behavior and Efficiency

2007-04-16
2007-01-0640
Mixture formation in the combustion chamber is of paramount significance for diesel combustion processes. Particularly in inhomogeneous combustion processes with internal mixture formation, the course of combustion and composition of combustion products are heavily influenced by charge motion and material transport during the compression phase and during combustion itself. Charge motion is normally quantified in steady-state flow testing. This model-based test takes place under idealized conditions. This means that with a permanently open valve and constant pressure differential over the inlet port, a steady-state flow of air is established in the simulated cylinder. The influence of piston movement is neglected. The test delivers integral characteristic flow figures, such as swirl number, flow number and tumble number.
Technical Paper

Diesel Combustion and Control Using a Novel Ignition Delay Model

2018-04-03
2018-01-1242
The future emission standards, including real driving emissions (RDE) measurements are big challenges for engine and after-treatment development. Also for development of a robust control system, in real driving emissions cycles under varied operating conditions and climate conditions, like low ambient temperature as well as high altitude are advanced physical-based algorithms beneficial in order to realize more precise, robust and efficient control concepts. A fast-running novel physical-based ignition delay model for diesel engine combustion simulation and additionally, for combustion control in the next generation of ECUs is presented and validated in this study. Detailed chemical reactions of the ignition processes are solved by a n-heptane mechanism which is coupled to the thermodynamic simulation of in-cylinder processes during the compression and autoignition phases.
X